Giuseppe Mazzola (European Organization for Nuclear Research)
TUPC73
Beam loss studies for the P42 beamline at the CERN SPS north area
1180
The P42 beamline transports 400 GeV protons from the CERN SPS between the T4 and T10 targets. A secondary particle beam is produced at the T10 target and transported along the K12 beamline to the experimental cavern ECN3, presently housing the NA62 experiment. In the context of the Physics Beyond Colliders (PBC) study, an increase of the beam intensity in P42 has been considered to provide protons to a future high-intensity fixed-target experiment in ECN3. For both its present usage and especially for the intensity upgrade, it is important to reduce beam losses to a minimum to decrease environmental radiation levels and protect equipment. In this study, simulations of P42 with the Monte Carlo software BDSIM, are used to demonstrate that beam losses in P42 are primarily driven by particle-matter interactions in material intercepted by the beam. The distribution of the simulated losses is compared to doses measured along the beamline in radioprotection surveys and beam loss monitors. Future mitigation strategies to reduce beam losses are then discussed and evaluated.
Paper: TUPC73
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC73
About: Received: 14 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
TUPC80
Radiation to electronics studies for CERN gamma factory-proof of principle experiment in SPS
1202
The Physics Beyond Colliders is a CERN exploratory study aimed to fully exploit the scientific potential of its accelerator complex. In this initiative, the Gamma Factory experiment aims to produce in the Large Hadron Collider (GF@LHC) high-intensity photon beams in the energy domain up to 400 MeV. The production scheme is based on the collisions of a laser with ultra-relativistic atomic beam of Partially Stripped Ions (PSI) circulating in a storage ring. The collision results in a resonant excitation of the atoms, followed by the spontaneous emission of high-energy photons. A Proof of Principle (PoP) experiment is being planned to study the GF scheme generating X-rays, in the range of keV, from lithium-like lead PSI stored at the CERN Super Proton Synchrotron (SPS). GF-PoP has undergone a series of exhaustive radiation effect studies in view of Radiation to Electronics (R2E) risks. With the use of FLUKA Monte Carlo code, the radiation environment in the laser room and its premises has been estimated during proton and PSI runs. Recorded data from beam instruments has been used to appropriately scale the computed results and to verify the compliance with general R2E limits.
Paper: TUPC80
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC80
About: Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024