Gilles Jacopo Silvi (Istituto Nazionale di Fisica Nucleare - Sez. Roma 1)
SUPC047
Experimental characterization of the timing-jitter effects on a beam-driven plasma wakefield accelerator
use link to access more material from this paper's primary code
Plasma wakefield acceleration is nowadays very attractive in terms of accelerating gradient, able to overcome conventional accelerators by orders of magnitude. However, this poses very demanding requirements on the accelerator stability to avoid large instabilities on the final beam energy. In this study we analyze the correlation between the driver-witness distance jitter (due to the RF timing jitter) and the witness energy gain in a plasma wakefield accelerator stage. Experimental measurements are reported by using an electro-optical sampling diagnostics with which we correlate the distance between the driver and witness beams prior to the plasma accelerator stage. The results show a clear correlation due to such a distance jitter highlighting the contribution coming from the RF compression.
  • F. Demurtas, A. Del Dotto, A. Rossi, A. Biagioni, A. Giribono, C. Vaccarezza, F. Villa, G. Costa, L. Giannessi, L. Crincoli, M. Galletti, M. Del Giorno, M. Ferrario, R. Pompili, S. Romeo, V. Shpakov
    Istituto Nazionale di Fisica Nucleare
  • A. Cianchi
    Università di Roma II Tor Vergata
  • E. Chiadroni
    Sapienza University of Rome
  • G. Silvi
    Istituto Nazionale di Fisica Nucleare - Sez. Roma 1
  • M. Anania
    University of Strathclyde
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPR43
About:  Received: 14 May 2024 — Revised: 20 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
SUPC078
UV-Soft X-ray betatron radiation characterization from laser-plasma wakefield acceleration
use link to access more material from this paper's primary code
The spontaneous emission of radiation from relativistic electrons within a plasma channel is called betatron radiation and has great potential to become a compact x-ray source in the future. We present an analysis of the performance of a broad secondary radiation source based on a high-gradient laser-plasma wakefield electron accelerator. The purpose of this study is to assess the possibility of having a new source for a non-destructive X-ray phase contrast imaging and tomography of heterogeneous materials. We report studies of compact and UV-soft X ray generation via betatron oscillations in plasma channel and in particular measurement of the radiation spectrum emitted from electron beam is analyzed from a grazing incident monochromator at Centro de Laseres Pulsados Ultraintensos (CLPU).
  • D. Francescone, A. Mostacci, E. Chiadroni, L. Giuliano, L. Palumbo, M. Carillo
    Sapienza University of Rome
  • A. Cianchi
    Università di Roma II Tor Vergata
  • A. Curcio, A. Rossi, G. Gatti, M. Galletti, M. Ferrario
    Istituto Nazionale di Fisica Nucleare
  • G. Silvi, M. Migliorati
    Istituto Nazionale di Fisica Nucleare - Sez. Roma 1
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPR58
About:  Received: 22 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
MOPR43
Experimental characterization of the timing-jitter effects on a beam-driven plasma wakefield accelerator
553
Plasma wakefield acceleration is nowadays very attractive in terms of accelerating gradient, able to overcome conventional accelerators by orders of magnitude. However, this poses very demanding requirements on the accelerator stability to avoid large instabilities on the final beam energy. In this study we analyze the correlation between the driver-witness distance jitter (due to the RF timing jitter) and the witness energy gain in a plasma wakefield accelerator stage. Experimental measurements are reported by using an electro-optical sampling diagnostics with which we correlate the distance between the driver and witness beams prior to the plasma accelerator stage. The results show a clear correlation due to such a distance jitter highlighting the contribution coming from the RF compression.
  • F. Demurtas, A. Del Dotto, A. Rossi, A. Biagioni, A. Giribono, C. Vaccarezza, F. Villa, G. Costa, L. Giannessi, L. Crincoli, M. Galletti, M. Del Giorno, M. Ferrario, R. Pompili, S. Romeo, V. Shpakov
    Istituto Nazionale di Fisica Nucleare
  • A. Cianchi
    Università di Roma II Tor Vergata
  • E. Chiadroni, M. Carillo
    Sapienza University of Rome
  • G. Silvi
    Istituto Nazionale di Fisica Nucleare - Sez. Roma 1
  • M. Anania
    University of Strathclyde
Paper: MOPR43
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPR43
About:  Received: 14 May 2024 — Revised: 20 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
MOPR58
UV-Soft X-ray betatron radiation characterization from laser-plasma wakefield acceleration
573
The spontaneous emission of radiation from relativistic electrons within a plasma channel is called betatron radiation and has great potential to become a compact x-ray source in the future. We present an analysis of the performance of a broad secondary radiation source based on a high-gradient laser-plasma wakefield electron accelerator. The purpose of this study is to assess the possibility of having a new source for a non-destructive X-ray phase contrast imaging and tomography of heterogeneous materials. We report studies of compact and UV-soft X ray generation via betatron oscillations in plasma channel and in particular measurement of the radiation spectrum emitted from electron beam is analyzed from a grazing incident monochromator at Centro de Laseres Pulsados Ultraintensos (CLPU).
  • D. Francescone, A. Mostacci, E. Chiadroni, L. Giuliano, L. Palumbo, M. Carillo
    Sapienza University of Rome
  • A. Cianchi
    Università di Roma II Tor Vergata
  • A. Curcio, A. Rossi, F. Stocchi, G. Gatti, M. Galletti, M. Ferrario
    Istituto Nazionale di Fisica Nucleare
  • G. Silvi, M. Migliorati
    Istituto Nazionale di Fisica Nucleare - Sez. Roma 1
Paper: MOPR58
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPR58
About:  Received: 22 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
WEPC67
NaKSb photocathode tests in a high gradient S-band photoinjector
2126
We report on initial characterization of NaKSb photocathodes in the Pegasus high gradient S-band RF photoinjector. These cathodes were grown at Cornell and transported by air to UCLA. Preliminary characterization was done in the UV and yielded a quantum efficiency of 1.5% and a mean transverse energy of 0.7±0.2 eV measured by solenoid scan. Photocathode response at different wavelengths as well as measurements of other important parameters such as cathode life-time, dark current levels and the time response are being planned.
  • D. Garcia
    Particle Beam Physics Lab (PBPL)
  • A. Ody
    Argonne National Laboratory
  • A. Mostacci, E. Chiadroni
    Sapienza University of Rome
  • A. Giribono
    Istituto Nazionale di Fisica Nucleare
  • B. Schaap, P. Musumeci
    University of California, Los Angeles
  • C. Pennington
    Cornell University (CLASSE)
  • G. Silvi
    Istituto Nazionale di Fisica Nucleare - Sez. Roma 1
  • J. Maxson
    Cornell University
Paper: WEPC67
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPC67
About:  Received: 28 May 2024 — Revised: 29 May 2024 — Accepted: 29 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote