Elleanor Lamb (Ecole Polytechnique Fédérale de Lausanne)
SUPC002
Measurements of beam correlations induced via coupled resonance crossing in the CERN PSB
use link to access more material from this paper's primary code
Beam profile measurements in the LHC and its injector complex show heavy tails in both transverse planes. From standard profile measurements, it is not possible to determine if the underlying phase space distribution is statistically independent. A measurement campaign in the CERN PSB was carried out to introduce cross-plane dependence in bunched beams in controlled conditions, in view of characterizing the LHC operational beam distributions. The results of the measurement campaign demonstrate how heavy tails can be created via coupled resonance excitation of the lattice in the presence of space charge, in accordance with predictions from the fixed line theory. The coupled resonance introduces dependence between the different planes, which persists after the resonance excitation is removed.
  • E. Lamb
    Ecole Polytechnique Fédérale de Lausanne
  • F. Asvesta, G. Sterbini, H. Bartosik, S. Albright, T. Prebibaj
    European Organization for Nuclear Research
  • G. Franchetti
    GSI Helmholtzzentrum für Schwerionenforschung GmbH
  • M. Seidel
    Paul Scherrer Institut
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC07
About:  Received: 15 May 2024 — Revised: 22 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
SUPC003
Luminosity effects due to dependent heavy-tailed beams
use link to access more material from this paper's primary code
The luminosity of particle colliders depends, among other parameters, on the transverse profiles of the colliding beams. At the LHC at CERN, heavy-tailed transverse beam distributions are typically observed in routine operation. The luminosity is usually modelled with the assumption that the 𝑥-𝑦 planes are independent (i.e. statistically uncorrelated particle distributions between the planes) in each beam. Analytical calculations show that the solution of inverting 1D heavy-tailed beam profiles to transverse 4D phase-space distributions is not unique. For a given transverse beam profile, the distributions can be dependent (i.e. statistically correlated) or independent in the transverse planes, even in the absence of machine coupling. In this work, the effect of transverse 𝑥-𝑦 dependence of the 4D phase space distribution on the luminosity of a particle collider is evaluated for heavy-tailed beams.
  • E. Lamb
    Ecole Polytechnique Fédérale de Lausanne
  • G. Sterbini, H. Bartosik
    European Organization for Nuclear Research
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC09
About:  Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
SUPC004
Numerical methods for emittance computation from luminosity
use link to access more material from this paper's primary code
The beam transverse emittances play a critical role in high-energy colliders. Various measurement techniques are employed to measure them. In particular, the so-called luminosity emittance scans (or Van der Meer scans) are used in order to evaluate the convoluted beam emittances. This method assumes different emittances in the two planes but identical emittances in the two beams. In this paper, we propose an approach to remove this constraint. After having presented the new measurement protocol, we will discuss its potential and limits, including the statistical measurement error of the luminosity value as obtained from numerical studies.
  • M. Rufolo
    IDSIA Dalla Molle Institute for Artificial Intelligence USI-SUPSI
  • A. Fornara
    The University of Manchester
  • E. Lamb
    Ecole Polytechnique Fédérale de Lausanne
  • G. Sterbini, L. Giacomel
    European Organization for Nuclear Research
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC19
About:  Received: 15 May 2024 — Revised: 17 May 2024 — Accepted: 17 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
MOPC09
Luminosity effects due to dependent heavy-tailed beams
55
The luminosity of particle colliders depends, among other parameters, on the transverse profiles of the colliding beams. At the LHC at CERN, heavy-tailed transverse beam distributions are typically observed in routine operation. The luminosity is usually modelled with the assumption that the 𝑥-𝑦 planes are independent (i.e. statistically uncorrelated particle distributions between the planes) in each beam. Analytical calculations show that the solution of inverting 1D heavy-tailed beam profiles to transverse 4D phase-space distributions is not unique. For a given transverse beam profile, the distributions can be dependent (i.e. statistically correlated) or independent in the transverse planes, even in the absence of machine coupling. In this work, the effect of transverse 𝑥-𝑦 dependence of the 4D phase space distribution on the luminosity of a particle collider is evaluated for heavy-tailed beams.
  • E. Lamb
    Ecole Polytechnique Fédérale de Lausanne
  • G. Sterbini, H. Bartosik
    European Organization for Nuclear Research
Paper: MOPC09
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC09
About:  Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
MOPC19
Numerical methods for emittance computation from luminosity
95
The beam transverse emittances play a critical role in high-energy colliders. Various measurement techniques are employed to measure them. In particular, the so-called luminosity emittance scans (or Van der Meer scans) are used in order to evaluate the convoluted beam emittances. This method assumes different emittances in the two planes but identical emittances in the two beams. In this paper, we propose an approach to remove this constraint. After having presented the new measurement protocol, we will discuss its potential and limits, including the statistical measurement error of the luminosity value as obtained from numerical studies.
  • M. Rufolo
    IDSIA Dalla Molle Institute for Artificial Intelligence USI-SUPSI
  • A. Fornara
    The University of Manchester
  • E. Lamb
    Ecole Polytechnique Fédérale de Lausanne
  • G. Sterbini, L. Giacomel
    European Organization for Nuclear Research
Paper: MOPC19
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC19
About:  Received: 15 May 2024 — Revised: 17 May 2024 — Accepted: 17 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
TUPC07
Measurements of beam correlations induced via coupled resonance crossing in the CERN PSB
1006
Beam profile measurements in the LHC and its injector complex show heavy tails in both transverse planes. From standard profile measurements, it is not possible to determine if the underlying phase space distribution is statistically independent. A measurement campaign in the CERN PSB was carried out to introduce cross-plane dependence in bunched beams in controlled conditions, in view of characterizing the LHC operational beam distributions. The results of the measurement campaign demonstrate how heavy tails can be created via coupled resonance excitation of the lattice in the presence of space charge, in accordance with predictions from the fixed line theory. The coupled resonance introduces dependence between the different planes, which persists after the resonance excitation is removed.
  • E. Lamb
    Ecole Polytechnique Fédérale de Lausanne
  • F. Asvesta, G. Sterbini, H. Bartosik, S. Albright, T. Prebibaj
    European Organization for Nuclear Research
  • G. Franchetti
    GSI Helmholtzzentrum für Schwerionenforschung GmbH
  • M. Seidel
    Paul Scherrer Institut
Paper: TUPC07
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC07
About:  Received: 15 May 2024 — Revised: 22 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote