Elena Ros (Arizona State University)
SUPC034
Simulation of CXFEL with MITHRA code
use link to access more material from this paper's primary code
The CXFEL project at ASU will produce coherent soft x-ray radiation at a university-scale facility. Unlike conventional XFELs, the CXFEL will use an optical undulator in addition to nanobunching the electron beam instead of a static magnetic undulator. This reduces the undulator period from cm-scale to micron scale and lowers the requirements on the electron beam energy. CXFEL’s overtaking geometry design reduces the effective undulator period to 7.86 μm to produce 1 keV photons. This is accomplished by crossing the laser and electron beam at a 30 degree overtaking angle, and using a tilted laser pulse front to maintain temporal overlap between the electron beam and laser pulse. The inverse Compton scattering interaction between a microbunched electron beam and an optical undulator falls out of the range of most accelerator codes. We employ MITHRA, a FEL full-wave FDTD solver software package which includes inverse Compton scattering to simulate the FEL lasing process. We have adapted the code to the CXFEL instrument design to simulate the radiation/electron beam interactions and report results of studies including scaling of key parameters.
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPG13
About: Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
MOPG13
Simulation of CXFEL with MITHRA code
327
The CXFEL project at ASU will produce coherent soft x-ray radiation at a university-scale facility. Unlike conventional XFELs, the CXFEL will use an optical undulator in addition to nanobunching the electron beam instead of a static magnetic undulator. This reduces the undulator period from cm-scale to micron scale and lowers the requirements on the electron beam energy. CXFEL’s overtaking geometry design reduces the effective undulator period to 7.86 μm to produce 1 keV photons. This is accomplished by crossing the laser and electron beam at a 30 degree overtaking angle, and using a tilted laser pulse front to maintain temporal overlap between the electron beam and laser pulse. The inverse Compton scattering interaction between a microbunched electron beam and an optical undulator falls out of the range of most accelerator codes. We employ MITHRA, a FEL full-wave FDTD solver software package which includes inverse Compton scattering to simulate the FEL lasing process. We have adapted the code to the CXFEL instrument design to simulate the radiation/electron beam interactions and report results of studies including scaling of key parameters.
Paper: MOPG13
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPG13
About: Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
TUCN3
Results from CXLS commissioning
981
The Compact X-ray Light Source (CXLS) is a compact source of femtosecond pulses of x-rays that is now commissioning in the hard x-ray energy range 4-20 keV. It collides the beams from recently developed X-band distributed-coupling, room-temperature, standing-wave linacs and photoinjectors operating at 1 kHz repetition rates and 9300 MHz RF frequency, and recently developed Yb-based lasers operating at high peak and average power to produce fs pulses of 1030 nm light at 1 kHz repetition rate with pulse energy up to 200 mJ. These instruments are designed to drive a user program in time-resolved x-ray studies such as SAXS/WAXS, XES and XAS, femtosecond crystallography as well as imaging. The different technical systems also act as prototypes for the more advanced CXFEL discussed elsewhere in these proceedings. We present the performance of the CXLS technical components and initial x-ray results.
Paper: TUCN3
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUCN3
About: Received: 20 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024