Devendra Upadhyay (Tribhuvan University)
SUPC098
Particles and photon attenuating behavior of lead free Eu3+ doped barium phosphate glass system
use link to access more material from this paper's primary code
The study investigates the radiation attenuation performance of five ternary glass systems with varying chemical compositions: 50P$_2$O$_5$-(50-x)BaO-xEu$_2$O$_3$, where x = 0, 1, 2, 4, and 6 mol%. It utilizes theoretical and Monte Carlo methods to determine shielding parameters such as attenuation coefficients, mean free path, value layers, electron densities, conductivity and neutron removal cross-sections across an energy range from 1 keV to 100 GeV. In addition to these analyses, the study explores kinetic energy stopping potentials and projected ranges of ions (H$^{+}$, He$^{+}$, and C$^{+}$) through the Stopping and Range of Ions in Matter database. Furthermore, research evaluates the dose rate attenuation behavior and trajectories of photons bombarded from $^{137}$Cs and $^{60}$Co sources using Particle and Heavy Ion Transport code System. Obtained results show that sample: 50P$_2$O$_5$-44BaO-6Eu$_2$O$_3$ with higher Eu$^{3+}$-doped glass has a potential for radiation shielding application among selected samples and is comparable with previously recommended, tested polymer and glass samples.
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPS07
About: Received: 15 May 2024 — Revised: 18 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
WEPS07
Particles and photon attenuating behavior of lead-free Eu3⁺ doped barium phosphate glass system
2705
The study investigates the radiation attenuation performance of five ternary glass systems with varying chemical compositions: 50P2O5-(50-x)BaO-xEu2O3, where x = 0, 1, 2, 4, and 6 mol%. It utilizes theoretical and Monte Carlo methods to determine shielding parameters such as attenuation coefficients, mean free path, value layers, electron densities, conductivity and neutron removal cross-sections across an energy range from 1 keV to 100 GeV. In addition to these analyses, the study explores kinetic energy stopping potentials and projected ranges of ions (H+, He+, and C+) through the Stopping and Range of Ions in Matter database. Furthermore, research evaluates the dose rate attenuation behaviour and trajectories of photons bombarded from 137Cs and 60Co sources using Particle and Heavy Ion Transport code System. Obtained results show that sample: 50P2O5-44BaO-6Eu2O3 with higher Eu3+-doped glass has a potential for radiation shielding application among selected samples and is comparable with previously recommended, tested polymer and glass samples.
Paper: WEPS07
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPS07
About: Received: 15 May 2024 — Revised: 18 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024