Christian Graeff (GSI Helmholtzzentrum für Schwerionenforschung GmbH)
TUPS29
Slow extraction of a dual-isotope beam from SIS18
1698
Recently, the heavy ion synchrotron SIS18 at GSI was for the first time operated with a dual-isotope beam, made up of 12C3+ and 4He+. Such a beam can be used to improve carbon radiotherapy by providing online information on dose deposition, where the helium ions serve as a probe beam traversing the patient while depositing a negligible dose. For this, the accelerator has to deliver a slowly extracted beam with a fixed fraction of helium over the spill. The difference in mass-to-charge ratio of 4He compared to 12C is small enough to permit simultaneous acceleration and to make the two isotopes practically indistinguishable for the accelerator instrumentation. Yet, it may cause a temporal shift between the two components in the spill owing to the sensitivity of slow extraction to tiny tune variations. We investigated different extraction methods, and examined the time-wise stability of the dual-isotope beam with a beam monitoring setup installed in the GSI biophysics experiment room. A constant helium fraction was obtained using transverse knock-out extraction with adjusted chromaticity.
  • D. Ondreka, L. Bozyk, C. Graeff, P. Spiller, J. Stadlmann, L. Volz
    GSI Helmholtzzentrum für Schwerionenforschung GmbH
Paper: TUPS29
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPS29
About:  Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
WEAN1
First dual isotope beam production for simultaneous heavy ion radiotherapy and radiography
1893
In the context of research on simultaneous heavy ion radiotherapy and radiography, a mixed carbon/helium ion beam has been successfully established and investigated at GSI for the first time to serve fundamental experiments on this new mode of image guidance. A beam with an adjustable ratio of 12C3+/4He+ was provided by the 14.5 GHz Caprice ECR ion source for subsequent acceleration in the linear accelerator UNILAC and the synchrotron SIS18. Despite the mass difference between the 4He+ and 12C3+ ions, both could be slowly extracted simultaneously at 225 MeV/u using the transverse knock-out extraction scheme. The ion beam has been finally characterized in the biophysics cave in terms of beam composition (particularly inter- and intra-spill He fraction), depth-dose-profiles, beam size, position and other parameters, all related to combined ion beam treatment and online monitoring. Utilizing high-speed particle radiography techniques, a fast extracted mixed ion beam has also been characterized in the plasma physics cave under conditions favorable to FLASH therapy.
  • M. Galonska, W. Barth, C. Graeff, R. Hollinger, F. Maimone, D. Ondreka, J. Stadlmann, P. Spiller, D. Varentsov, L. Volz, T. Wagner
    GSI Helmholtzzentrum für Schwerionenforschung GmbH
  • S. Reimann
    Goethe Universität Frankfurt
  • M. Schanz
    Los Alamos National Laboratory
Paper: WEAN1
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEAN1
About:  Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote