Chandra Bhat (Fermi National Accelerator Laboratory)
TUPC09
Flattening the field during injection in the Fermilab booster using dipole corrector magnets
1014
The FNAL Booster is a fast cycling 15 Hz resonant circuit synchrotron accelerating proton beam from 400 MeV to 8 GeV. The linac pulse injected into the Booster is ~32 μsec long and fills the ring by multi-turn charge-exchange injection. As part of the PIP-II project, the Booster injection energy and repetition rate will be increased to 800 MeV and 20 Hz respectively. Due to much reduced average current in the new superconducting PIP-II linac, the injection time will increase to 550 μs. A shorter machine cycle coupled to a longer injection time make flattening the injection porch B-field during injection important requirement for successful PIP-II operation. We aim to achieve: (1) flattening of the net bending during injection using dipole correctors, and (2) using a new system based on an Altera FPGA board, reduction of the cycle-to-cycle bending field variation caused by current jitter in the Gradient Magnet Power Supply (GMPS). While the flat injection scheme is essential to future PIP-II operations, it should also noticeably improve efficiency for present HEP operations.
Paper: TUPC09
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC09
About: Received: 22 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
TUPS40
A novel two stage collimation unit for Fermilab booster
1742
A new two-stage collimation unit (2SC) for Fermilab Booster will be installed during 2024 summer shutdown. It is a supplementary collimator for existing single stage Booster collimators. Unique operational principles of this new 2SC adapted to Booster conditions are described. Results of beam dynamics simulations on collimation efficiency of the new 2SC are presented. Evaluation of collimator shielding has been performed with MARS code. The analysis on prompt and residual activation was found to meet Fermilab Radiological Control limits. We will also present the results from analysis on shielding as well as residual activation.
Paper: TUPS40
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPS40
About: Received: 15 May 2024 — Revised: 18 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
THPC69
Full-cycle simulations of the Fermilab booster
3183
The PIP-II project currently under construction at FNAL will replace the existing 400 MeV normal conducting linac with a 800 MeV superconducting linac. The beam power in the downstream rapid-cycling Booster synchrotron will be doubled by raising the machine cycle frequency from 15 to 20 Hz and by increasing the injected beam intensity by a factor 1.5. This has to be accomplished without raising uncontrolled losses beyond the administrative limit of 1 W/m. In addition, slip-stacking efficiency in the Recycler — the next machine in the accelerator chain- sets an upper limit on the longitudinal emittance of the beam delivered by the Booster. As part of an effort to better understand potential losses and emittance blow-up in the Booster, we have been conducting full cycle 6D simulations using the code pyORBIT. The simulations include space charge, wall impedance effects and transition crossing. In this paper, we discuss our experience with the code and present representative results for possible operational scenarios.
Paper: THPC69
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPC69
About: Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024