Brahim Mustapha (Argonne National Laboratory)
SUPG018
Minimizing space charge tune spread and increasing beam quality parameters with circular modes
use link to access more material from this paper's primary code
Space charge has been a limiting effect for low energy accelerators inducing emittance growth and tune spread. Tune shift and tune spread parameters are important for avoiding resonances, which limits intensity of the beam. Circular modes are round beams with intrinsic flatness that are generated through strong coupling, where intrinsic flatness can be transformed to real plane flatness through decoupling. It is understood that flat beams increase the quality parameters of a beam due to one of the plane emittances being smaller than the other plane since luminosity and beam brightness depend inversely on the beam emittances. We show that circular mode beams manifest smaller space charge tune spread compared to uncorrelated round beams, which allows better systematic control of operating point of the beam. Minimized tune spread allows flexible operating points on the tune map. We also dedicate current and intrinsic flatness ratio limits on circular modes, which increase quality parameters without detrimental effects on the emittance increase.
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPC71
About: Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
Machine learning tools for heavy-ion linacs
At a heavy ion linac facility, such as ATLAS at Argonne National Laboratory, a new ion beam is tuned once or twice a week. The use of machine learning can be leveraged to streamline the tuning process, reducing the time needed to tune a given beam and allowing more beam time for the experimental program. After establishing automatic data collection and two-way communication with the control system, we have developed machine learning models to tune and control the machine. We have successfully trained different Bayesian Optimization (BO)-based models online for different sections of the linac, including the commissioning of a new beamline. We have demonstrated transfer learning from one ion beam to another allowing fast switching between ion beams, and also transfer learning from a simulation-based model to an online machine model using Neural Networks as the prior-mean for BO. We have also trained a Reinforcement Learning (RL) model online for one beam and deploy it for the tuning of other beams. These models are now being generalized to other sections of the ATLAS linac and can, in principle, be adapted to control other ion linacs and accelerators with modern control systems.
WEPG37
Beam tomography using MCMC
2291
Beam tomography is a method to reconstruct the higher dimensional beam from its lower dimensional projections. Previous methods to reconstruct the beam required large computer memory for high resolution; others needed differential simulations, and others did not consider beam elements' coupling. This work develops a direct 4D reconstruction algorithm using Markov Chain Monte Carlo.
Paper: WEPG37
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPG37
About: Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
THPC71
Minimizing space charge tune spread and increasing beam quality parameters with circular modes
3190
Space charge has been a limiting effect for low energy accelerators inducing emittance growth and tune spread. Tune shift and tune spread parameters are important for avoiding resonances, which limits intensity of the beam. Circular modes are round beams with intrinsic flatness that are generated through strong coupling, where intrinsic flatness can be transformed to real plane flatness through decoupling. It is understood that flat beams increase the quality parameters of a beam due to one of the plane emittances being smaller than the other plane since luminosity and beam brightness depend inversely on the beam emittances. We show that circular mode beams manifest smaller space charge tune spread compared to uncorrelated round beams, which allows better systematic control of operating point of the beam. Minimized tune spread allows flexible operating points on the tune map. We also dedicate current and intrinsic flatness ratio limits on circular modes, which increase quality parameters without detrimental effects on the emittance increase.
Paper: THPC71
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPC71
About: Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
A pulsed Wien filter as a low-energy kicker
In order for the new ATLAS Materials Irradiation Station (AMIS) to take advantage of the future multi-user capabilities at ATLAS, a pulsed kicker is needed to switch 1 MeV/u heavy-ion beams. At this energy and due to space limitations, a pulsed electric kicker is very challenging due to very high voltage requirement, and a magnetic kicker is also very challenging due to the high magnetic field and fast switching requirements. A solution that satisfies the beam switching requirements is a pulsed Wien filter that combines a DC magnetic field with a pulsed electric field, where each provide only half of the kick angle. During the kicked beam pulse, the two fields combine to provide the full kick angle, while the electric field switches sign to cancel the magnetic field during the un-kicked beam pulse. The electromagnetic and beam design for this novel device will be presented and discussed. The device is now under construction and will be tested in the coming year, first offline then online with beam.