MC6.T17 Alignment and Survey
SUPG060
Generation of symmetrical optical caustic beams for precise alignment
use link to access more material from this paper's primary code
Generating layers of symmetrical optical caustic beams using a specific configuration of cylindrical lenses is an innovative idea with potential application in precision alignment and other fields. The technique allows the generation of layers of non-diffracting beams with opposite accelerating directions. This approach can be extended in two dimensions or to create rotationally symmetric beams. Prior methods have produced similar beams using spatial light modulators, but the presented approach with cylindrical lenses reduces setup complexity and cost, thereby opening the possibility for new applications. In the context of particle accelerators, these include particle acceleration using high-power lasers and alignment of accelerator components. The presented research emphasizes the possibility for this technique to be used as a reference line for precise alignment. It allows the generation of reference lines with a thickness in the order of millimeters for distances of tens to hundreds of meters, which is advantageous for large accelerator facilities. A brief description of the sensors used to detect misalignment is also presented.
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG35
About: Received: 14 May 2024 — Revised: 22 May 2024 — Accepted: 24 May 2024 — Issue date: 01 Jul 2024
THPC83
Test of parallel beam-based alignment at NSLS-II
3237
Misalignment of magnets in the storage rings causes trajectory deviation when the beam traverses through magnets, resulting in the degraded performance of linear optics and nonlinear dynamics. The beam-based alignment (BBA) technique is commonly used to steer the beam passing through the centers of magnets. Recently, a new method has been developed to determine the centers of multiple magnets simultaneously [1]. In this paper, the test of this fast BBA method at NSLS-II is presented.
Paper: THPC83
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPC83
About: Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
THPG35
Generation of symmetrical optical caustic beams for precise alignment
3333
Generating layers of symmetrical optical caustic beams using a specific configuration of cylindrical lenses is an innovative idea with potential application in precision alignment and other fields. The technique allows the generation of layers of non-diffracting beams with opposite accelerating directions. This approach can be extended in two dimensions or to create rotationally symmetric beams. Prior methods have produced similar beams using spatial light modulators, but the presented approach with cylindrical lenses reduces setup complexity and cost, thereby opening the possibility for new applications. In the context of particle accelerators, these include particle acceleration using high-power lasers and alignment of accelerator components. The presented research emphasizes the possibility for this technique to be used as a reference line for precise alignment. It allows the generation of reference lines with a thickness in the order of millimeters for distances of tens to hundreds of meters, which is advantageous for large accelerator facilities. A brief description of the sensors used to detect misalignment is also presented.
Paper: THPG35
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG35
About: Received: 14 May 2024 — Revised: 22 May 2024 — Accepted: 24 May 2024 — Issue date: 01 Jul 2024
THPG36
Continuous position estimation for the full remote alignment system of the High Luminosity LHC upgrade
3337
The Full Remote Alignment System (FRAS) is an alignment system remotely controlled and monitored that comprises almost one thousand permanent sensors distributed along the 200 meters of equipment that will be installed in the frame of the High Luminosity LHC (HL-LHC) project on either side of the ATLAS and CMS detectors. The sensors, along with their electronics and a system of motorized actuators, will be used to adjust the relative positions of the components remotely, in real time, with no human intervention needed in the irradiated environment of the tunnel. In this contribution we describe the design and the implementation of the position estimation algorithm which is a core-component of the FRAS. This algorithm will process the data provided by all the sensors to determine exact positions and orientations of the associated components in real-time. The position estimation module is designed as a reusable C++ library and builds on the existing CERN LGC, a modular least-square software. It will be fully integrated into the FRAS software stack and is entirely file-less during operation. In this paper we will demonstrate its performance in a realistic case study and showcase its ability to provide position updates on a much higher frequency than the required 1 Hz.
Paper: THPG36
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG36
About: Received: 15 May 2024 — Revised: 17 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
THPG37
Parallel quadrupole modulation for fast beam-based determination of magnet centers
3341
A method to simultaneously determine the magnetic centers of multiple magnets with beam-based measurements is proposed. Similar to the quadrupole modulation system (QMS) method that is widely used for beam-based alignment measurement, the strengths of the group of selected magnets are modulated. The orbit shifts induced by the modulation are used to deduce the kicks applied at the magnet locations with the help of orbit response matrix calculated with the lattice model. By varying the beam orbit at the magnets, with a pair of corrector of magnets or local orbit bumps, and repeating the modulation measurement at each orbit, the magnet centers can be determined through fitting the calculated kicks versus the beam orbit. Demonstration of the method on a storage ring is presented. The method can also been applied to nonlinear magnets.
Paper: THPG37
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG37
About: Received: 10 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
THPG38
Reducing background/noise in stretched wire alignment technique measurements
3345
The stretched-wire alignment technique is one method of magnet alignment for linear induction accelerators. The applications of the Stretched-Wire Alignment Technique (SWAT) have been implemented for aligning magnets/solenoids on the Scorpius linear induction accelerator which will be sited at the Nevada National Security Site and the Flash X-Ray (FXR) linear induction accelerator at Lawrence Livermore National Laboratory’s Contained Firing Facility. This article describes both systematic (repeatable) and random sources of background/noise as well as practical ways to either eliminate or mitigate them to acceptable levels. Systematic sources include reflections from wire ends, rapid sag due to ohmic heating of the wire, magnetic materials, and shot rate. Random sources include air currents, vibration of nearby equipment, mechanical stability of test equipment, and the instruments used to measure the wire motion. Mitigations include curve fitting and adaptive noise signal cancellation, and mechanical damping. Finite Element Analysis (FEA) was used to interpret results.
Paper: THPG38
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG38
About: Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024