MC4.T01 Proton and Ion Sources
SUPC098
Particles and photon attenuating behavior of lead free Eu3+ doped barium phosphate glass system
use link to access more material from this paper's primary code
The study investigates the radiation attenuation performance of five ternary glass systems with varying chemical compositions: 50P$_2$O$_5$-(50-x)BaO-xEu$_2$O$_3$, where x = 0, 1, 2, 4, and 6 mol%. It utilizes theoretical and Monte Carlo methods to determine shielding parameters such as attenuation coefficients, mean free path, value layers, electron densities, conductivity and neutron removal cross-sections across an energy range from 1 keV to 100 GeV. In addition to these analyses, the study explores kinetic energy stopping potentials and projected ranges of ions (H$^{+}$, He$^{+}$, and C$^{+}$) through the Stopping and Range of Ions in Matter database. Furthermore, research evaluates the dose rate attenuation behavior and trajectories of photons bombarded from $^{137}$Cs and $^{60}$Co sources using Particle and Heavy Ion Transport code System. Obtained results show that sample: 50P$_2$O$_5$-44BaO-6Eu$_2$O$_3$ with higher Eu$^{3+}$-doped glass has a potential for radiation shielding application among selected samples and is comparable with previously recommended, tested polymer and glass samples.
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPS07
About: Received: 15 May 2024 — Revised: 18 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
Commissioning of extended electron beam ion source for Relativistic Heavy Ion Collider
The Extended Electron Beam Ion Source (EEBIS) was installed and commissioned for the Relativistic Heavy Ion Collider (RHIC), NASA Space Radiation Laboratory (NSRL), and future Electron Ion Collider (EIC) at Brookhaven National Laboratory (BNL). Within one month of completed installation, daily operation of multiple ion beams for Galactic Cosmic Ray (GCR) simulation for NSRL science was achieved. Concurrently, gold ion beam was developed at higher intensities and pulse rates in anticipation of RHIC operation. After demonstrating simultaneous operation of beams for both the RHIC and NSRL programs, machine learning algorithms were implemented to tune both the electrostatic beam transport lines and the dynamic voltages of the drift tube structure inside of EEBIS. The methods and results are presented and discussed.
WEPS01
High-intensity polarized and unpolarized H⁻ sources development and operation at BNL
2691
The AGS-RHIC injector complex includes H- ion sources at 35 keV, 750 keV RFQ and 200 MeV Linac. This report will focus on the recent upgrade of the 35 KeV Low Energy Beam Transport (LEBT) with three sources: two high-intensity magnetron H- sources and an Optically Pumped Polarized Ion Source (OPPIS) polarized H- source. There were still significant beam intensity losses in the 8 m long OPPIS transport line due to H- stripping, therefore, to meet the demand for the higher beam intensity in the 2024 polarized run, the OPPIS LEBT length was reduced by about two meters. Another possibility for increasing beam intensity is to increase the beam pulse width. The sources performance and operation in Run-2024 will be presented.
Paper: WEPS01
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPS01
About: Received: 15 May 2024 — Revised: 22 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
Ion sources for FAIR - Facility for Antiproton and Ion Research at Darmstadt, Germany
FAIR (Facility for antiproton and ion research) is a new accelerator complex in Darmstadt, Germany which will come into operation 2027. The existing GSI accelerator will serve as an injector for the FAIR facility. GSI comprises three main injector lines equipped with different kinds of ion sources producing ion beams of a large number of gaseous and metallic elements according to the various requirements of different experiments. The south injector is equipped with Penning type ion sources (PIG) for metallic and gaseous ion production delivering ion currents up to 100 µA and charge states of up to 8+. The north injector is equipped with high current ion sources of the multicusp type (MUCIS, CHORDIS) and the vacuum arc type ion source VARIS. With this kind of ion source we are able to deliver ion beam currents of up to several mA of up to 5+ charged ions. The third injector is the high charge state injector equipped with a 14.5 GHz ECR ion source delivering ion beam currents of up to 100 µA and charge state of up to 20+ of gaseous and metallic ions. This paper gives an overview of all the ion beams produced by these ion sources and the most important operational parameters
WEPS03
Hybrid plasma generator for high intensity fast pulsed ion sources
2694
The main challenge in the development of high intensity ion sources is, besides the space charge limited extraction, the available plasma density. Conventional plasma generators use e.g. arc discharge plasmas or RF generated plasmas. Preliminary tests are carried out on both types of plasma generators and plasma parameters are determined to create a basis for evaluation. A concept is being developed that combines the advantages of both types. This hybrid plasma generator will also be investigated in terms of plasma parameters in order to test a possible application for high intensity ion sources. Further the proposed plasma generator has the property that due to a permanently available low-density RF plasma a faster build-up of the highly dense arc discharge plasma may be achieved. The properties of the concept with regard to a fast plasma build-up time are being investigated in order to test a possible application for the fast pulsing of high intensity ion sources.
Paper: WEPS03
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPS03
About: Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
WEPS04
A faster initial cesium transfer for the LANSCE H⁻ ion source
2698
The LANSCE H- Ion Source utilizes a cesium coated converter to induce H- surface conversion. To achieve an optimal cesium coating, a heated cesium reservoir and transfer tube vaporizes cesium onto the converter surface. An initial coating of cesium is done via an initial cesium transfer. During this process, the cesium heater is brought to a high initial temperature (250°C) and is slowly lowered to the operational temperature (~190°C) over six hours, followed by a static conditioning for another 18 hours to get the cesium converter coating optimal for H- surface conversion. Any reduction in the 24-hour cesium transfer process would allow more for experimental time for LANSCE experiments. Thus, there is high value in seeking to reduce the initial Cs transfer time. The LANSCE H- Ion Source Laser Diagnostic Stand was recently utilized to take cesium density measurements inside the H- Ion Source as a function of cesium reservoir temperature. A comparison of the measured cesium densities to the theoretical cesium vapor pressure values will be presented. Also, results using the measured cesium densities to calculate and run a faster cesium transfer process will be discussed.
Paper: WEPS04
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPS04
About: Received: 15 May 2024 — Revised: 22 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
WEPS05
Summary of the LANL mini-workshop on source region options for LAMP
2702
The core components of the LANSCE accelerator complex – the beam source area, drift-tube and cavity-coupled linear accelerators – are more than 50 years old; a critical subsystem for beam delivery to the Lujan Center, the proton storage ring (PSR), is more than 20 years old. The proposed LAMP project is intended to begin a revitalization and update of the LANSCE accelerator complex, starting with the beam source region, drift-tube linac, and PSR. To help assure we have selected an optimal candidate design for the source region, an internal workshop was held in August 2023 to consider options for providing two beam species at the peak and average currents, and beam macropulse formats, required by the various LANSCE user stations. This document describes the workshop goals and processes, presents the various configurations considered, and lists the results of the downselect process and potential paths forward.
Paper: WEPS05
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPS05
About: Received: 08 May 2024 — Revised: 21 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
WEPS07
Particles and photon attenuating behavior of lead-free Eu3⁺ doped barium phosphate glass system
2705
The study investigates the radiation attenuation performance of five ternary glass systems with varying chemical compositions: 50P2O5-(50-x)BaO-xEu2O3, where x = 0, 1, 2, 4, and 6 mol%. It utilizes theoretical and Monte Carlo methods to determine shielding parameters such as attenuation coefficients, mean free path, value layers, electron densities, conductivity and neutron removal cross-sections across an energy range from 1 keV to 100 GeV. In addition to these analyses, the study explores kinetic energy stopping potentials and projected ranges of ions (H+, He+, and C+) through the Stopping and Range of Ions in Matter database. Furthermore, research evaluates the dose rate attenuation behaviour and trajectories of photons bombarded from 137Cs and 60Co sources using Particle and Heavy Ion Transport code System. Obtained results show that sample: 50P2O5-44BaO-6Eu2O3 with higher Eu3+-doped glass has a potential for radiation shielding application among selected samples and is comparable with previously recommended, tested polymer and glass samples.
Paper: WEPS07
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPS07
About: Received: 15 May 2024 — Revised: 18 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024