MC1.A18 Energy Recovery Linacs (ERLs)
SUPC025
Optimization of cooling distribution of the EIC cooler ERL
use link to access more material from this paper's primary code
The Electron-Ion Collider (EIC) Hadron Storage Ring (HSR) will use strong hadron cooling to maintain the beam brightness and high luminosity during long collision experiments. An Energy Recovery Linac is used to deliver the high-current high-brightness electron beam for cooling. For the best cooling effect, the electron beam requires low emittance, small energy spread, and uniform longitudinal distribution. In this work, we simulate and optimize the longitudinal laser-beam distribution shaping at the photo-cathode, modeling space charge forces accurately. Machine parameters such as RF cavity phases are optimized in conjunction with the beam distribution using a genetic optimizer. We demonstrate the improvement to the cooling distribution in key parameters.
  • N. Wang
    Cornell University
  • C. Gulliford
    Xelera Research LLC
  • E. Wang
    Brookhaven National Laboratory
  • G. Hoffstaetter
    Cornell University (CLASSE)
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC43
About:  Received: 15 May 2024 — Revised: 22 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
TUPC43
Optimization of cooling distribution of the EIC SHC cooler ERL
1104
The Electron-Ion Collider (EIC) Hadron Storage Ring (HSR) will use strong hadron cooling to maintain the beam brightness and high luminosity during long collision experiments. An Energy Recovery Linac is used to deliver the high-current high-brightness electron beam for cooling. For the best cooling effect, the electron beam requires low emittance, small energy spread, and uniform longitudinal distribution. In this work, we simulate and optimize the longitudinal laser-beam distribution shaping at the photo-cathode, modeling space charge forces accurately. Machine parameters such as RF cavity phases are optimized in conjunction with the beam distribution using a genetic optimizer. We demonstrate the improvement to the cooling distribution in key parameters.
  • N. Wang
    Cornell University
  • C. Mayes
    SLAC National Accelerator Laboratory
  • C. Gulliford
    Xelera Research LLC
  • D. Sagan, G. Hoffstaetter
    Cornell University (CLASSE)
  • E. Wang, W. Bergan
    Brookhaven National Laboratory
  • I. Neththikumara, K. Deitrick, S. Benson, T. Satogata
    Thomas Jefferson National Accelerator Facility
  • N. Sereno
    Argonne National Laboratory
Paper: TUPC43
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC43
About:  Received: 15 May 2024 — Revised: 22 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
TUPC44
Single bunch tracking on the ten-pass ER@CEBAF energy recovery beamline
1108
The proposed ten-pass energy recovery linac (ERL) demonstration (five accelerating, five decelerating) at the CEBAF accelerator, ER@CEBAF, involves a multi-GeV energy range of a continuous electron beam. New CEBAF transverse optics were designed for this ERL demonstration. This redesign incorporates additional components in Arc A, including a path length chicane and new quadrupoles to ensure proper dispersion localization. The new five energy recovery passes with a shared arc transport scheme challenge the overall beamline optics design, including large beta functions in the CEBAF spreaders and recombiners. Here we discuss results of bunch tracking performed using the elegant tracking code for the full ER@CEBAF beamline.
  • I. Neththikumara, A. Bogacz, B. Gamage, T. Satogata
    Thomas Jefferson National Accelerator Facility
Paper: TUPC44
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC44
About:  Received: 06 May 2024 — Revised: 17 May 2024 — Accepted: 17 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
TUPC45
A preliminary feasibility study on multi-cavity cryomodule integration for the Electron Ion Collider energy recover linac cooler
1111
The Electron-Ion Collider (EIC) is a cutting-edge accelerator designed to collide highly polarized electrons and ions. For enhanced luminosity, the ion beam is cooled via an electron beam sourced from an energy recovery linac (ERL). The current ERL design accommodates one RF cavity per cryomodule, presenting both beam transport and cost-related challenges. This study investigates the feasibility of reducing the cavity size to accommodate two cavities within a single cryomodule. We analyze two compact cavity design options through frequency scaling, assuming constant loaded quality factor Q and R/Q scaling proportional to the square of the frequency ratio. Our analytical and tracking Beam BreakUp (BBU) model predicts the threshold current for each option. While a smaller cavity footprint is advantageous, maintaining sufficient damping of Higher Order Modes (HOMs) is crucial. We compare the HOM damping effectiveness of the proposed compact design to the existing configuration, which achieves sufficient damping within a slightly larger footprint.
  • S. Setiniyaz, I. Neththikumara, J. Guo, K. Deitrick, T. Satogata, S. Benson
    Thomas Jefferson National Accelerator Facility
  • C. Mayes
    SLAC National Accelerator Laboratory
  • C. Gulliford, N. Taylor
    Xelera Research LLC
  • N. Sereno
    Argonne National Laboratory
Paper: TUPC45
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC45
About:  Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote