Tepikian Steven
MOPC43
Correction of the detector solenoid effect in the hadron storage ring of the Electron-Ion Collider
156
The Electron Ion Collider design strategy for reaching unprecedented luminosities and detection capabilities involves collision of flat bunches at a relatively large crossing angle. Effective head-on collisions are restored using crab cavities, which introduce a correlation of the particles' transverse coordinates with their longitudinal positions in the bunch, or crab dispersion. The collision geometry is further complicated by a tilt of the Electron Storage Ring plane with respect to that of the Hadron Storage Ring. In addition, the interaction point is placed inside the field of a detector solenoid. Reaching the design luminosity requires precise control of the 6D bunch distribution at the IP accounting for all of the aforementioned design features. This paper describes correction of the detector solenoid effect on the beam optics of the Hadron Storage Ring using a combination of local and global skew quadrupoles.
Paper: MOPC43
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC43
About: Received: 15 May 2024 — Revised: 18 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
MOPC67
The EIC accelerator: design highlights and project status
214
The design of the electron-ion collider (EIC) at Brookhaven National Laboratory is well underway, aiming at a peak electron-proton luminosity of 10e+34 cm^-1·sec^-1. This high luminosity, the wide center-of-mass energy range from 29 to 141 GeV (e-p) and the high level of polarization require innovative solutions to maximize the performance of the machine, which makes the EIC one of the most challenging accelerator projects to date. The complexity of the EIC will be discussed, and the project status and plans will be presented.
Paper: MOPC67
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC67
About: Received: 07 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
MOPC73
Design Updates to the EIC Electron Storage Ring Lattice
234
The Electron-Ion Collider (EIC) at Brookhaven National Laboratory will feature a 3.8-kilometer electron storage ring (ESR) that will circulate polarized beams with energies ranging from 5 to 18 GeV for collision with hadrons from a separate ring at luminosities up to 10^34 cm^{-2} s^{-1}. This contribution focuses on several recent changes to the lattice design of the ESR. Super-bend dipole triplets are used in the arc cells to increase the damping decrement and horizontal emittance at 5 GeV. Their lengths have recently been optimized to balance these two requirements. The interaction region has been modified to accommodate the requirements of a Compton polarimeter. Major changes have been made to IR8, which is the location of a possible second interaction region and detector that may be installed in a future upgrade. A design for a non-colliding IR8 has been developed that simplifies the setup to reduce initial costs and complexity. The latest lattice design of the ESR is presented here, and the major design choices are discussed.
Paper: MOPC73
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC73
About: Received: 13 May 2024 — Revised: 18 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
MOPC75
Progress on the design of the interaction region of the Electron-Ion Collider EIC
238
We present an update on the design of the Interaction Region (IR) for the the Electron Ion Collider (EIC) being built at Brookhaven National Laboratory (BNL). The EIC will collide high energy and highly polarized hadron and electron beams with a center of mass energy up to 140 GeV with luminosities of up to 10^34 /cm^2/s. The IR, located at RHIC's IR6, is designed to meet the requirements of the nuclear physics community as outlined in [1]. A second IR is technically feasible but not part of the project. The magnet apertures are sufficiently large to allow desired collision products to reach the far-forward detectors; the electron magnet apertures in the rear direction are chosen to be large enough to pass the synchrotron radiation fan. In the forward direction the electron apertures are large enough for non-Gaussian tails. The paper discusses a number of recent recent changes to the design. The machine free region was recently increased from 9 to 9.5 m to allow for more space in the forward direction for the detector. The superconducting magnets on the forward side now operate at 1.9 K, which helps crosstalk and space issues.
Paper: MOPC75
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC75
About: Received: 14 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
MOPC82
Dynamic aperture of the EIC electron storage ring
266
Design of the electron-ion collider (EIC) at Brookhaven National Laboratory continues to be optimized. Particularly, the collider storage ring lattices have been updated. Dynamic aperture of the evolving lattices must be kept sufficiently large, as required. In this paper, we discuss the collider Electron Storage Ring, where the lattice updates include improvements of the interaction region layout and arc dipole configuration, reduced number of magnet types, and changes related to the use of existing magnets. Optimization of non-linear chromaticity correction for an updated 18 GeV lattice and the latest estimates of dynamic aperture with errors are presented.
Paper: MOPC82
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC82
About: Received: 16 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
MOPC83
Polarization preservation methods for the Electron Storage Ring of the EIC
270
The Electron Storage Ring (ESR) of the Electron-Ion Collider (EIC) to be built at Brookhaven National Laboratory will provide spin-polarized electron beams at 5, 10, and 18 GeV for collisions with polarized hadrons. Electron bunches with polarizations parallel and anti-parallel to the arc dipole fields will co-circulate in the ring at the same time, and each bunch must be replaced once it is sufficiently depolarized by synchrotron radiation. In this work, we detail the unique challenges posed by designing such a collider ring to operate at different energies, and their solutions. This includes satisfying spin matching conditions, calculating optimal energies for polarization, determining best figures-of-merit, maintaining high polarization without a traditional longitudinal spin match, restoring the spin match with random closed orbit distortions, and implementing global coupling compensation and vertical emittance creation schemes that preserve high polarization. Nonlinear tracking results are presented showing polarization requirements are exceeded.
Paper: MOPC83
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC83
About: Received: 13 May 2024 — Revised: 03 Jun 2024 — Accepted: 03 Jun 2024 — Issue date: 01 Jul 2024
TUPR44
Progress on the normal conducting magnets for the Electron-Ion Collider
1514
The electron-ion collider (EIC) at Brookhaven National Laboratory (BNL) is designed to deliver a peak luminosity of 1e+34 1/cm2 1/sec. The EIC will take advantage of the existing Relativistic Heavy Ion Collider (RHIC) facility. Two additional rings will be installed: an electron storage ring (ESR) and a rapid cycling electron synchrotron ring (RCS). This paper presents an update on the normal conducting magnet designs required for both the ESR and RCS rings. The ESR will store polarized electron beams up to 18 GeV and utilizes a triplet of dipole magnets to increase the emittance at 5 GeV and generate excess bending to create additional radiation damping to allow a larger beam-beam tune shift. The RCS will accelerate single bunches of spin-polarized electrons at various energies from 5 GeV to 18 GeV, with a ramp rate of 100 ms and 1 Hz repetition rate. Both rings require dipole, quadrupole and sextupole magnets with different specifications.
Paper: TUPR44
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPR44
About: Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024