Schäfer Stefan
THPS20
A new cryogenic permanent magnet undulator at BESSY-II: the CPMU-20
3773
We discuss the design and properties of a proposed planar cryogenic permanent magnet undulator with 20 mm period length called CPMU-20. The undulator is set to use (Pr,Nd)2Fe14B as permanent magnet material and Permendur poles and is set to be part of the planned SoTeXS beamline at the BESSY-II upgrade which will offer a unique working environment for research into energy-materials – especially energy-storage materials. The CPMU-20 is designed to produce high photon fluxes in the energy range of 0.5 to 5 keV with a maximum K-value of 2.2 which permits research into a wide range of materials used in state of the art batteries. The optimization process that led to the specific device properties like the period length, the width of the poles and the end-magnet configuration – which ensures an aligned electron beam through the device for the whole gap-range from 6 to 22 mm - will be presented in detail. This includes a discussion of the usage of the UNDUMAG and WAVE software written by Michael Scheer for the optimization and simulations.
  • S. Schäfer, M. Scheer
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
  • A. Meseck
    Johannes Gutenberg University Mainz
  • E. Rial
    Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH
Paper: THPS20
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPS20
About:  Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote