Boine-Frankenheim Oliver
SUPG047
Commissioning and experiments with a compact transverse deflecting system at FLUTE
use link to access more material from this paper's primary code
A Compact Transverse Deflecting System (Compact-TDS) designed for longitudinal electron bunch diagnostics in the femtosecond regime is presently undergoing commissioning at the Karlsruhe Institute of Technology (KIT). This technique, based on THz streaking using a resonator structure, demands a high level of electron beam controllability and stability at the micrometer scale. To meet these requirements, the linear accelerator FLUTE (Ferninfrarot Linac- Und Test-Experiment) has undergone major upgrades in 2023, incorporating a new RF system equipped with a klystron, RF photoinjector and solenoid magnet. In this contribution, we present first experiments conducted with the Compact-TDS at FLUTE, utilizing the upgraded RF setup.
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPG52
About: Received: 14 May 2024 — Revised: 20 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
MOPS68
Automated optimization of accelerator settings at GSI
882
The complexity of the GSI/FAIR accelerator facility demands a high level of automation in order to maximize time for physics experiments. Accelerator laboratories world-wide are exploring a large variety of techniques to achieve this, from classical optimization to reinforcement learning. This paper reports on the first results of using Geoff at GSI for automatic optimization of various beam manipulations. Geoff (Generic Optimization Framework & Frontend) is an open-source framework that harmonizes access to the above automation techniques and simplifies the transition towards and between them. It is maintained as part of the EURO-LABS project in cooperation between CERN and GSI. In dedicated beam experiments, the beam loss of the multi-turn injection into the SIS18 synchrotron has been reduced from 40% to 10% in about 15 minutes, where manual adjustment can take up to 2 hours. Geoff has also been used successfully at the GSI Fragment Separator (FRS) for beam steering. Further experimental activities include closed orbit correction for specific broken-symmetry high-transition-energy SIS18 optics with Bayesian optimization in comparison to traditional SVD-based correction.
Paper: MOPS68
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPS68
About: Received: 06 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
WEPG52
Commissioning and experiments with a compact transverse deflecting system at FLUTE
2339
A Compact Transverse Deflecting System (Compact-TDS) designed for longitudinal electron bunch diagnostics in the femtosecond regime is presently undergoing commissioning at the Karlsruhe Institute of Technology (KIT). This technique, based on THz streaking using a resonator structure, demands a high level of electron beam controllability and stability at the micrometer scale. To meet these requirements, the linear accelerator FLUTE (Ferninfrarot Linac- Und Test-Experiment) has undergone major upgrades in 2023, incorporating a new RF system equipped with a klystron, RF photoinjector and solenoid magnet. In this contribution, we present first experiments conducted with the Compact-TDS at FLUTE, utilizing the upgraded RF setup.
Paper: WEPG52
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPG52
About: Received: 14 May 2024 — Revised: 20 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
WEPG53
Resonator design optimization for a compact transverse-deflecting system
2343
Various design options have been studied and simulated using CST MICROWAVE STUDIO for a compact transverse-deflecting system proposed for diagnostics of extremely short electron bunches. The idea of the method is to use terahertz radiation, produced from optical rectification of the facility’s electron gun laser pulse. The proposed system is to be checked experimentally at the test facility FLUTE (Ferninfrarot Linac- und Test-Experiment) at Karlsruhe Institute of Technology (KIT). The present paper is focused on the simulations of the resonator providing interaction between the electron bunch and the terahertz pulse. Two types of resonators and their arrays have been studied for this purpose: inverse split-ring resonator and tilted slit resonator. Different types of terahertz pulse structure have been studied, including plane wave and transversely focused (Gaussian) beam. Useful analytical models have been proposed to systematize the results of the simulations.
Paper: WEPG53
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPG53
About: Received: 13 May 2024 — Revised: 20 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024