Gao Jian
MOCD1
X-band high gradient accelerating structure for VIGAS project at Tsinghua university
14
A light source project named Very Compact Inverse Compton Gamma-ray Source (VIGAS) is under development at Tsinghua University. VIGAS aims to generate monochromatic high-energy gamma rays by colliding a 350 MeV electron beam with a 400-nm laser. To produce a high-energy electron beam in a compact accelerator with a length shorter than 12 meters, the system consists of an S-band high-brightness injector and six X-band high-gradient accelerating structures. The X-band structure’s frequency is 11.424 GHz, and it adopts a constant gradient traveling wave approach; thus, the iris from the first cell to the end cell is tapered. The total cell number is 72, so we named it XT72. In the last two years, we conducted the design, fabrication, and tuning of the first prototype of XT72. Recently, we finished the high-power test, and the result demonstrates that it has the ability to work at an 80 MV/m gradient. In this paper, we present the latest update on this structure.
Paper: MOCD1
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOCD1
About: Received: 05 May 2024 — Revised: 20 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
MOPC58
Fabrication and low-power testing of an X-band mode converter for VIGAS
198
A new X-band mode converter for the Very Compact Inverse Compton Scattering Gamma-ray Source (VIGAS) program in Tsinghua University has been fabricated and conducted low-power testing. S11 is under -30 dB with -0.05 dB of S21 at the operating frequency of 11.424GHz according to the low-power test using the vector network analyzer, which is consistent with simulation results.
Paper: MOPC58
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC58
About: Received: 03 May 2024 — Revised: 18 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
WEPC15
Simulation of a 2.6-cell normal-conducting S-band photocathode RF gun
1987
A new S-band photocathode RF gun proposed for ultrafast electron diffraction (UED) has been designed and optimized. The electron gun works at pi mode and the operating frequency is 2.998GHz. The pulsed RF power loss is 3.2MW and the final kinetic energy of the electron beam is 3.5MeV. The RF gun works at high duty factor of 0.2% and the average power loss reaches 6kW. We have used ASTRA, a space charge tracking algorithm to simulate the beam dynamics and improve the bunch properties. By comparing the simulation results under different conditions, we found that the electron beam has good properties both transversely and longitudinally under some conditions. The simulation of bunch properties helps improve spatial-temporal resolution of UED.
Paper: WEPC15
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPC15
About: Received: 14 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
WEPC17
Design of a Ku-band side-coupled standing wave 2.5 MeV accelerator
1993
Compact accelerator systems are assuming an increasingly significant role within the domain of radiotherapy. As processing technology continues to mature, X-band accelerators have garnered extensive utilization. This study introduces a design for a side-coupled traveling-wave Ku-band accelerator tube, leveraging established processing methodologies. The envisaged particle output energy stands at 2.5 MeV, with a microwave power source requiring a 300 kW input sourced from a klystron. The microwave design outcomes, derived using ANSYS HFSS, are delineated herein, alongside considerations pertaining to dynamic output and engineering design. Subsequent stages will subject this accelerator tube to processing tests, with the overarching objective of effectively supplanting the natural radiation source Co60 within the realm of radiotherapy.
Paper: WEPC17
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPC17
About: Received: 14 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024