Witte Holger
MOPC43
Correction of the detector solenoid effect in the hadron storage ring of the Electron-Ion Collider
156
The Electron Ion Collider design strategy for reaching unprecedented luminosities and detection capabilities involves collision of flat bunches at a relatively large crossing angle. Effective head-on collisions are restored using crab cavities, which introduce a correlation of the particles' transverse coordinates with their longitudinal positions in the bunch, or crab dispersion. The collision geometry is further complicated by a tilt of the Electron Storage Ring plane with respect to that of the Hadron Storage Ring. In addition, the interaction point is placed inside the field of a detector solenoid. Reaching the design luminosity requires precise control of the 6D bunch distribution at the IP accounting for all of the aforementioned design features. This paper describes correction of the detector solenoid effect on the beam optics of the Hadron Storage Ring using a combination of local and global skew quadrupoles.
  • V. Morozov
    Oak Ridge National Laboratory
  • A. Blednykh, S. Nagaitsev, V. Ptitsyn
    Brookhaven National Laboratory (BNL)
  • C. Montag, C. Liu, D. Marx, D. Xu, F. Willeke, H. Lovelace III, H. Witte, J. Berg, M. Blaskiewicz, S. Peggs, S. Tepikian, Y. Luo
    Brookhaven National Laboratory
  • T. Satogata
    Thomas Jefferson National Accelerator Facility
Paper: MOPC43
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC43
About:  Received: 15 May 2024 — Revised: 18 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
MOPC64
Recycling magnets for the EIC electron storage ring
211
The Electron Storage Ring (ESR) of the Electron-Ion Collider requires some 400 quadrupoles and 200 sextupoles, plus dipole magnets and correctors. In an effort to reduce cost and relax the demand on the magnet vendor pool, used quadrupoles and sextupoles of the Advanced Photon Source at Argonne National Laboratory will be refurbished and installed in the ESR.
  • C. Montag, D. Marx, G. Mahler, J. Tuozzolo, H. Witte, R. Karl, F. Kobasiuk
    Brookhaven National Laboratory
  • C. Doose, J. Xu, M. Jaski, R. Bechtold, C. Rock
    Argonne National Laboratory
  • C. Dubbe, S. Philip, J. Meyers
    Thomas Jefferson National Accelerator Facility
  • M. Beck
    Jefferson Lab
  • H. Singh
    Brookhaven National Laboratory (BNL)
Paper: MOPC64
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC64
About:  Received: 07 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
MOPC67
The EIC accelerator: design highlights and project status
214
The design of the electron-ion collider (EIC) at Brookhaven National Laboratory is well underway, aiming at a peak electron-proton luminosity of 10e+34 cm^-1·sec^-1. This high luminosity, the wide center-of-mass energy range from 29 to 141 GeV (e-p) and the high level of polarization require innovative solutions to maximize the performance of the machine, which makes the EIC one of the most challenging accelerator projects to date. The complexity of the EIC will be discussed, and the project status and plans will be presented.
  • C. Montag, A. Zaltsman, A. Fedotov, B. Podobedov, B. Parker, C. Folz, C. Liu, D. Marx, D. Weiss, D. Xu, D. Kayran, D. Holmes, E. Aschenauer, E. Wang, F. Willeke, F. Meot, G. Wang, G. Mahler, G. Robert-Demolaize, H. Huang, H. Lovelace III, H. Witte, I. Pinayev, J. Berg, J. Kewisch, J. Tuozzolo, K. Smith, K. Drees, M. Sangroula, M. Blaskiewicz, M. Minty, Q. Wu, R. Gupta, R. Than, S. Seletskiy, S. Peggs, S. Tepikian, S. Nayak, W. Xu, W. Bergan, W. Fischer, X. Gu, Y. Li, Y. Luo, Z. Conway
    Brookhaven National Laboratory
  • A. Blednykh, C. Hetzel, D. Gassner, J. Jamilkowski, N. Tsoupas, P. Baxevanis, S. Nagaitsev, S. Verdu-Andres, V. Ptitsyn, V. Ranjbar, V. Shmakova
    Brookhaven National Laboratory (BNL)
  • A. Seryi, B. Gamage, E. Nissen, E. Daly, K. Deitrick, R. Rimmer, S. Philip, S. Benson, T. Michalski, T. Satogata
    Thomas Jefferson National Accelerator Facility
  • D. Sagan, G. Hoffstaetter, J. Unger, M. Signorelli
    Cornell University (CLASSE)
  • E. Gianfelice-Wendt
    Fermi National Accelerator Laboratory
  • F. Lin, V. Morozov
    Oak Ridge National Laboratory
  • G. Stupakov
    xLight Incorporated
  • J. Qiang
    Lawrence Berkeley National Laboratory
  • M. Sullivan, Y. Cai, Y. Nosochkov
    SLAC National Accelerator Laboratory
  • Y. Hao
    Facility for Rare Isotope Beams
Paper: MOPC67
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC67
About:  Received: 07 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
MOPC75
Progress on the design of the interaction region of the Electron-Ion Collider EIC
238
We present an update on the design of the Interaction Region (IR) for the the Electron Ion Collider (EIC) being built at Brookhaven National Laboratory (BNL). The EIC will collide high energy and highly polarized hadron and electron beams with a center of mass energy up to 140 GeV with luminosities of up to 10^34 /cm^2/s. The IR, located at RHIC's IR6, is designed to meet the requirements of the nuclear physics community as outlined in [1]. A second IR is technically feasible but not part of the project. The magnet apertures are sufficiently large to allow desired collision products to reach the far-forward detectors; the electron magnet apertures in the rear direction are chosen to be large enough to pass the synchrotron radiation fan. In the forward direction the electron apertures are large enough for non-Gaussian tails. The paper discusses a number of recent recent changes to the design. The machine free region was recently increased from 9 to 9.5 m to allow for more space in the forward direction for the detector. The superconducting magnets on the forward side now operate at 1.9 K, which helps crosstalk and space issues.
  • H. Witte, A. Jentsch, A. Kiselev, A. Marone, B. Parker, C. Runyan, C. Montag, C. Liu, D. Marx, D. Holmes, E. Aschenauer, F. Willeke, G. McIntyre, G. Mahler, G. Robert-Demolaize, H. Hocker, H. Lovelace III, J. Berg, J. Rochford, J. Schmalzle, J. Cozzolino, J. Tuozzolo, K. Hamdi, K. Smith, K. Drees, M. Anerella, M. Blaskiewicz, P. Kovach, Q. Wu, R. Palmer, S. Peggs, S. Tepikian, W. Christie, Y. Luo, Z. Zhang
    Brookhaven National Laboratory
  • A. Novokhatski, M. Sullivan, Y. Nosochkov
    SLAC National Accelerator Laboratory
  • A. Blednykh, C. Hetzel, D. Gassner, V. Ptitsyn
    Brookhaven National Laboratory (BNL)
  • B. Gamage, M. Stutzman, T. Michalski
    Thomas Jefferson National Accelerator Facility
  • C. Messe, G. Sabbi, L. Brouwer, P. Ferracin, S. Prestemon
    Lawrence Berkeley National Laboratory
  • G. Ambrosio, V. Kashikin, V. Marinozzi
    Fermi National Accelerator Laboratory
  • V. Morozov
    Oak Ridge National Laboratory
Paper: MOPC75
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC75
About:  Received: 14 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
MOPC77
Eddy current shielding of the magnetic field ripple in the EIC electron storage ring vacuum chambers
246
The EIC electron storage ring has very tight tolerances for the amplitude of electron beam position and size oscillations at the interaction point. The oscillations at the proton betatron frequency and its harmonics are the most dangerous because they could lead to unacceptable proton emittance growth from the oscillating beam-beam kick from the electrons. To estimate the amplitude of these oscillations coming from the magnet power supply current ripple we need to accurately account for the eddy current shielding by the copper vacuum chamber with 4-mm thick wall. At the frequencies of interest, the skin depth is a small fraction of the wall thickness, so the commonly used single-pole expressions for eddy current shielding transfer function do not apply. In this paper we present new (to the best of our knowledge) analytical formulas that adequately describe the shielding for this frequency range and chamber geometry and discuss the implications for the power supply ripple specifications at high frequency.
  • B. Podobedov, H. Witte, M. Blaskiewicz
    Brookhaven National Laboratory
Paper: MOPC77
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC77
About:  Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
MOPC80
Global betatron coupling compensation for the hadron storage ring of the Electron-Ion Collider
258
The Electron Ion Collider (EIC), to be constructed at Brookhaven National Laboratory, will collide polarized high-energy electron beams with hadron beams, achieving luminosities up to 1e+34 cm^−2 s^−1 in the center-mass energy range of 20-140 GeV. The Hadron Storage Ring (HSR) of the EIC will utilize the arcs of the Relativistic Heavy Ion Collider (RHIC) and construct new straight sections connecting the arcs. In this article, we will examine all available skew quadrupoles currently in the HSR lattice and explore possible schemes for future global betatron coupling correction with RHIC-like decoupling feedback system. The effects of detector solenoids and quadrupole rolls are estimated at injection and stored energies. We also studied the decoupling requirements for generating and maintaining large transverse emittance ratio beams in the HSR.
  • Y. Luo, C. Liu, J. Berg, M. Blaskiewicz, S. Peggs, H. Lovelace III, H. Witte, D. Xu, F. Willeke, D. Marx, C. Montag
    Brookhaven National Laboratory
  • V. Ptitsyn, S. Nagaitsev
    Brookhaven National Laboratory (BNL)
  • V. Morozov
    Oak Ridge National Laboratory
  • T. Satogata
    Thomas Jefferson National Accelerator Facility
Paper: MOPC80
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC80
About:  Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
MOPC82
Dynamic aperture of the EIC electron storage ring
266
Design of the electron-ion collider (EIC) at Brookhaven National Laboratory continues to be optimized. Particularly, the collider storage ring lattices have been updated. Dynamic aperture of the evolving lattices must be kept sufficiently large, as required. In this paper, we discuss the collider Electron Storage Ring, where the lattice updates include improvements of the interaction region layout and arc dipole configuration, reduced number of magnet types, and changes related to the use of existing magnets. Optimization of non-linear chromaticity correction for an updated 18 GeV lattice and the latest estimates of dynamic aperture with errors are presented.
  • Y. Nosochkov, Y. Cai
    SLAC National Accelerator Laboratory
  • C. Montag, D. Marx, H. Witte, J. Berg, J. Kewisch, S. Peggs, S. Tepikian, Y. Li
    Brookhaven National Laboratory
  • G. Hoffstaetter, J. Unger, M. Signorelli
    Cornell University (CLASSE)
Paper: MOPC82
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC82
About:  Received: 16 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
MOPC86
Status of the second interaction region design for Electron-Ion Collider
278
Provisions are being made in the Electron Ion Collider (EIC) design for future installation of a second Interaction Region (IR), in addition to the day-one primary IR. The envisioned location for the second IR is the existing experimental hall at RHIC IP8. It is designed to work with the same beam energy combinations as the first IR, covering a full range of the center-of-mass energy of ~20 GeV to ~140 GeV. The goal of the second IR is to complement the first IR, and to improve the detection of scattered particles with magnetic rigidities similar to those of the ion beam. To achieve this, the second IR hadron beamline features a secondary focus in the forward ion direction. The design of the second IR is still evolving. This paper reports the current status of its parameters, magnet layout, and beam dynamics and discusses the ongoing improvements being made to ensure its optimal performance
  • B. Gamage, R. Ent, R. Rajput-Ghoshal, T. Satogata, A. Seryi, Y. Zhang
    Thomas Jefferson National Accelerator Facility
  • E. Aschenauer, J. Berg, K. Drees, A. Jentsch, K. Hamdi, D. Marx, H. Witte, D. Xu
    Brookhaven National Laboratory
  • V. Morozov
    Oak Ridge National Laboratory
Paper: MOPC86
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC86
About:  Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
MOPG03
Polarization performance of a 3 GeV electron booster
289
We study the design and spin performance of a polarized electron Booster. This booster will accelerate polarized electrons from 200 MeV to 3 GeV. We examine the polarization transmission of the existing NSLS-II Booster design as well as a modified AGS-Booster lattice using an 8-fold symmetric design and increasing the betatron tune to 7.85 to avoid all intrinsic spin resonances.
  • V. Ranjbar, S. Nagaitsev
    Brookhaven National Laboratory (BNL)
  • C. Montag, F. Willeke, H. Lovelace III, H. Witte, M. Blaskiewicz
    Brookhaven National Laboratory
Paper: MOPG03
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPG03
About:  Received: 14 May 2024 — Revised: 18 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
TUPR43
Extended Jiles-Atherton hysteresis model to accurately predict fields in a Rapid Cycling Synchrotron dipole magnet
1510
Particle accelerators use high field quality magnets to steer and focus beams. Normal conducting magnets commonly use soft iron for the yoke, which is subject to hysteresis effects. It is common practice to use an initialization procedure to accomplish a defined state of the magnet for which its hysteresis behavior must be known. In this article, a variation of the scalar Jiles-Atherton model with an improved physical basis called the Extended Jiles-Atherton (EJA) model is employed to predict the B-H trajectories in a Rapid Cycling Synchrotron (RCS) magnet. Simulations are conducted using COMSOL Multiphysics using the external material feature to integrate EJA model with the Finite Element Method (FEM). Results from the experimental studies conducted on a magnet prototype are also presented. Finally, potential improvements in the model and extension to the case of a two-dimensional anisotropic material are discussed.
  • H. Singh
    Brookhaven National Laboratory (BNL)
  • H. Witte, S. Notaro, V. Teotia
    Brookhaven National Laboratory
Paper: TUPR43
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPR43
About:  Received: 14 May 2024 — Revised: 18 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
TUPR44
Progress on the normal conducting magnets for the Electron-Ion Collider
1514
The electron-ion collider (EIC) at Brookhaven National Laboratory (BNL) is designed to deliver a peak luminosity of 1e+34 1/cm2 1/sec. The EIC will take advantage of the existing Relativistic Heavy Ion Collider (RHIC) facility. Two additional rings will be installed: an electron storage ring (ESR) and a rapid cycling electron synchrotron ring (RCS). This paper presents an update on the normal conducting magnet designs required for both the ESR and RCS rings. The ESR will store polarized electron beams up to 18 GeV and utilizes a triplet of dipole magnets to increase the emittance at 5 GeV and generate excess bending to create additional radiation damping to allow a larger beam-beam tune shift. The RCS will accelerate single bunches of spin-polarized electrons at various energies from 5 GeV to 18 GeV, with a ramp rate of 100 ms and 1 Hz repetition rate. Both rings require dipole, quadrupole and sextupole magnets with different specifications.
  • R. Lovelace, V. Ranjbar
    Brookhaven National Laboratory (BNL)
  • H. Witte, C. Montag, J. Berg, S. Tepikian, D. Marx, S. Notaro, G. Mahler
    Brookhaven National Laboratory
  • C. Dubbe
    Thomas Jefferson National Accelerator Facility
  • M. Jaski, J. Xu
    Argonne National Laboratory
  • V. Kashikhin, G. Chlachidze
    Fermi National Accelerator Laboratory
Paper: TUPR44
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPR44
About:  Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
TUPR45
Test magnet for the EIC Rapid Cycling Synchrotron
1517
Brookhaven National Laboratory (BNL) was recently chosen to host the Electron Ion Collider (EIC), which will collide high energy and highly polarized hadron and electron beams with a center of mass energy up to 140 GeV and a luminosity of up to 1e+34 1/cm^2/s. Part of the accelerator complex is a Rapid Cycling Synchrotron (RCS), which is planned to accelerate electrons from 400 MeV to 18 GeV. Due to the large energy range and the given circumference of the ring, the magnetic fields of the RCS magnets at injection are very low (~mT). A test dipole magnet was constructed to study differences in field quality from 5-50 mT. The paper discusses the design of the test magnet and first measurement results.
  • H. Witte, G. Mahler, J. Avronsart, P. Joshi, S. Notaro, V. Teotia
    Brookhaven National Laboratory
  • V. Ranjbar
    Brookhaven National Laboratory (BNL)
Paper: TUPR45
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPR45
About:  Received: 14 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
TUPR46
Design of dipole magnets for luminosity pair spectrometer subsystem at the detectors of electron ion collider
1520
The EIC will collide high energy and highly polarized hadron and electron beams with luminosities up to 1e+34 /cm^2/s. Bremsstrahlung photons from the Bethe-Heitler process at the interaction point (IP) need to be counted to determine the delivered luminosities. The pair spectrometer luminosity detector utilizes photon conversions (e+ and e- pairs) in the far-backward region. A sweeper dipole magnet was designed to sweep away the photon conversions that occur at the thick exit window. An analyzer dipole magnet was designed with an integrated field of 1.13 T*m to deflect the electrons and positrons that will be analyzed by the tracker and calorimeter detectors. Both magnets were designed and simulated using the 3-dimensional (3D) finite element method (FEM). The effects of notch size and locations on the iron yoke to the magnetic field quality were studied. The tracker performance, including tracker position resolutions and tracker energy resolutions, were analyzed based on the field map of the designed dipole magnets.
  • P. Xu
    Brookhaven National Laboratory (BNL)
  • H. Witte, S. Notaro
    Brookhaven National Laboratory
  • D. Gangadharan
    University of Houston
Paper: TUPR46
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPR46
About:  Received: 14 May 2024 — Revised: 20 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
TUPR49
Self-correction coil for RCS dipole in Electron Ion Collider
1531
The Rapid Cyclotron Synchrotron (RCS) is an acceleration ring designed for boosting the electron energy from 400 MeV after the LINAC to 1 GeV prepared for injection into the Electron Storage Ring (ESR). Operating in a pulsed mode at 1 Hz, the RCS accelerates four consecutive bunches with dipole magnet ramping rapidly at each injection. Rapid ramping of the magnetic field induces eddy currents, causing delays and high harmonic effects which are detrimental to low-energy electron bunches. To mitigate this, cost-effective multi-turn coils with specific patterns are proposed. These coils, powered by eddy currents from main dipole field ramping, generate counter fields to cancel selected high harmonic components. This paper explores the coil pattern selection process.
  • Q. Wu, G. Mahler, H. Witte, M. Blaskiewicz
    Brookhaven National Laboratory
  • S. Nagaitsev, V. Ranjbar
    Brookhaven National Laboratory (BNL)
Paper: TUPR49
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPR49
About:  Received: 15 May 2024 — Revised: 24 May 2024 — Accepted: 24 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
WEPS61
Mapping the stray magnetic field at the Relativistic Heavy Ion Collider tunnel
2836
A new Rapid Cycling Synchrotron (RCS) [1] is designed to accelerate the electron bunches from 400 MeV up to 18 GeV for the Electron Ion Collider (EIC) [2] being built at Brookhaven National Laboratory (BNL). One of the two Relativistic Heavy Ion Collider (RHIC) rings will serve as the Hadron Storage Ring (HSR) of the EIC. Beam physics simulations for the RCS demonstrate that the electron beam is sensitive to the outside magnetic field in the tunnel. Significant magnetic fields are expected due to the HSR and the Electron Storage Ring (ESR) being at full energy during the RCS operation. The earth magnetic field at the location of the RCS center was measured throughout the circumference of 3870 m tunnel without RHIC operation. In addition, the fringe magnetic field from RHIC magnets at several locations during RHIC operation was measured and compared with simulation at different ramping currents. A robotic technology is being developed to automatically measure the stray magnetic field at any location during the RHIC (or future EIC) operation.
  • P. Xu, Y. Bai
    Brookhaven National Laboratory (BNL)
  • G. Mahler, H. Witte, K. Drees, Q. Wu
    Brookhaven National Laboratory
Paper: WEPS61
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPS61
About:  Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote