Le Bec Gaël
TUCN1
Vertical beam halo characterisation at the ESRF EBS for operation with reduced in vacuum undulator gap
973
The vertical beam halo is the main limitation for very low gap operation of in-vacuum undulators at the ESRF EBS. The vertical halo is due to Touschek electrons with large energy deviation crossing some betatron resonances. The crossing of the resonances can transfer horizontal momentum to vertical momentum. The beam halo has been characterized and measured and different low halo optics have been studied and tested to allow the operation of the machine with lower in-vacuum undulator gaps.
Paper: TUCN1
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUCN1
About: Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
TUPG25
Operation and developments at the ESRF-EBS light source
1270
The European Synchrotron Radiation Facility - Extremely Brilliant Source (ESRF-EBS) is a facility upgrade allowing its scientific users to take advantage of the first high-energy 4th generation storage ring light source. In December 2018, after 30 years of operation, the beam stopped for a 12-month shutdown to dismantle the old storage ring and to install the new X-ray source. On 25th August 2020, the user program restarted with beam parameters very close to nominal values. Since then beam is back for the users at full operation performance and with an excellent reliability. This paper reports on the present operation performance of the source, highlighting the ongoing and planned developments and the sustainability efforts.
Paper: TUPG25
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPG25
About: Received: 10 May 2024 — Revised: 20 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
TUPR47
Magnetic design of non-linear kicker for ESRF-EBS
1524
The ESRF-EBS injection is performed with a standard off-axis injection scheme consisting of two in-air septa S1/2, one in vacuum septum S3 and four kicker magnets K1 to K4 to generate the injection bump. We can achieve 80% efficiency with this scheme. Despite many modifications and adjustments which allow the reduction of the perturbation, some beamlines are still affected. The Non-Linear Kicker could be a solution to this problem because it acts only on the injected beam. This paper reports on the magnetic design of the Non-Linear Kicker, including the octupole like Magnetic field simulations, magnetic forces calculations and mechanical tolerance optimizations.
Paper: TUPR47
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPR47
About: Received: 13 May 2024 — Revised: 20 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
THPC17
Mini-beta optics commissioning at the European Synchrotron Radiation Facility Extremely Brilliant Source
3007
The European Synchrotron Radiation Facility (ESRF) presently operates with the Hybrid Multi-Bend Achromat (HMBA) lattice that features 𝛽-functions of 6.9 m and 2.7 m in the horizontal and vertical planes at the center of the straight sections. New optics were designed to increase the brilliance of beam lines with a single undulator placed at the center of the straight section. The reduction of the in-vacuum undulator gap and of the beta-functions both contribute to this increase. This paper reports on the optics beam commissioning results and experimental observation with the reduced in-vacuum undulator gap.
Paper: THPC17
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPC17
About: Received: 14 May 2024 — Revised: 21 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024