Stratakis Diktys
TUPC41
Adaptation of the Fermilab proton source to support new muon facilities
1100
The PIP-II proton accelerator will provide the intensity sufficient to power a new generation of high energy facilities at Fermilab. Extension of that linac to higher energy with following acceleration and bunching rings could provide the intensity needed to feed a muon production target for a high-energy μ+-μ- collider. Scenarios using a rapid-cycling synchrotron or an ~8 GeV Linac are presented and discussed. Use of the existing Fermilab accelerators is also discussed. Support for other high-intensity experiments such as muon-ion collisions, neutrino sources and lepton flavor conservation is also considered.
Paper: TUPC41
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC41
About: Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
TUPS20
Final cooling with thick wedges for a muon collider
1684
In the final cooling stages for a muon collider, the transverse emittances are reduced while the longitudinal emittance is allowed to increase. In previous studies, Final 4-D cooling used absorbers within very high field solenoids to cool low-momentum muons. Simulations of the systems did not reach the desired cooling design goals. In this study, we develop and optimize a different conceptual design for the final 4D cooling channel, which is based on using dense wedge absorbers. We used G4Beamline to simulate the channel and Python to generate and analyze particle distributions. We optimized the design parameters of the cooling channel and produced conceptual designs (corresponding to possible starting points for the input beam) which achieve transverse cooling in both x and y by a factor of ~3.5. These channels achieve a lower transverse and longitudinal emittance than the best design previously published.
Paper: TUPS20
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPS20
About: Received: 13 May 2024 — Revised: 20 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
WECD3
The US effort towards a muon collider
1937
A multi-TeV muon collider has the unique potential to provide both precision measurements and the highest energy reach in one machine that cannot be paralleled by any currently available technology. There has been significant physics interest on Muon Colliders recently as indicated by the number of publications, relevant workshops, Snowmass activities but also the P5 report. This study describes a possible set of R&D and deliverables of the muon collider accelerator R&D program in the U.S. We describe high-priority studies to be performed in the first phase that will address critical questions for deciding the future plan for a muon collider design. The goal of these studies is to firm up choices for the most challenging components of a muon collider design, and to propose and begin testing and prototyping of components and systems that are needed to have confidence in and inform our specification choices. Key areas wherein the US can provide critical contributions to the newly formed international muon collider collaboration will be discussed as well.
Paper: WECD3
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WECD3
About: Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
WEPR34
An engineering prototype of a late stage ionization cooling cell for a muon collider
2564
Achieving the low emittances necessary for a muon collider requires ionization cooling. Much of that cooling occurs in compact cooling cells where superconducting coils and conventional RF cavities are closely interleaved [1]. The real challenges for these cooling cells reside in their engineering challenges: high field solenoids, RF cavities, and absorbers, often designed near technological limits, placed in close proximity to each other. We thus propose to build a prototype ionization cooling cell to demonstrate the capability of constructing an ionization cooling channel reaching the lowest emittances and to provide engineering input for the design of such beamlines. The magnets and cavities will be powered at their design values, and an absorber will be included along with a mechanism for heating the absorber similarly to how a beam would.
Paper: WEPR34
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPR34
About: Received: 15 May 2024 — Revised: 22 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
WEPR39
Proposed muon collider R&D at SNS
2578
Generation of a muon beam at a Muon Collider requires relatively short, high-charge proton bunches. They are produced in a high-average-power proton driver by first accumulating a proton beam from a super-conducting linac, then bunching the beam and finally compressing and combining the bunches into a single high-intensity proton pulse. All of these beam formation stages involve handling of unprecedentedly high beam charges. Validation of these intricate beam manipulations requires better understanding of extreme space-charge effects and experimental demonstration. A facility perhaps most closely resembling the proton driver configuration and beam parameters is the Spallation Neutron Source (SNS) accelerator complex at Oak Ridge National Laboratory (ORNL). Considering the energy scaling of the space-charge parameters, many of the beam formation steps planned for the proton driver can be experimentally checked at the SNS at the relevant space-charge interaction levels. This paper discusses potential proton driver and other muon-collider-related R\&D at the SNS.
Paper: WEPR39
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPR39
About: Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024