

Lina Hoummi*

May 10th 2023, IPAC23, Venice, Italy

Acknowledgements:

ESRF-EBS Beam dynamics group: N. Carmignani, L.R. Carver, S.M. Liuzzo, T. Perron, S.M. White, ESRF-EBS Accelerator and Science Division colleagues,

SOLEIL colleagues: P. Alexandre, P. Brunelle, A. Gamelin, R. Nagaoka, M.-A. Tordeux,

M. Apollonio, A. Brainbridge, R. Ollier, A. Poyet, R. Sirvinskaite, P. Tavares, T. Shaftan, for their help and fruitful discussions.

*lina.hoummi@esrf.fr

- Diffraction limit: definition, impact on brilliance and electron beam conditions
- Ultra-low emittance storage ring lattices
 - High-Order Achromat and Hybrid Multi-Bend Achromat (MBA)
 - Reverse Bend and Longitudinal Gradient Bend unitcell
 - Examples of MBA lattices with an ultra-low natural emittance
 - Complex Bend II
- Challenges
 - Magnet technology: high-gradient, permanent magnets, cross-talks
 - Bunch lengthening with Harmonic Cavities (HC)
 - Injection schemes and transparent top-up injection

• The challenge of the century: Climate change and energy/resources crisis to come

MOTIVATION

Provide a <u>high quality photon beam</u> for the synchrotron user community, and enable breakthroughs in spectroscopy, high-resolution imaging, microscopy, etc.

Photon beam parameters:

- \rightarrow Wavelength λ
- \rightarrow Spectral flux $F(\lambda)$: number of photons per solid angle $d\Omega$ and per bandwidth $d\lambda/\lambda$
- $\rightarrow \underline{\text{Brilliance } B(\lambda)}: \text{ the number of photons per second emitted} \\ \text{ in a given spatial section } d\Omega dS \text{ and in a given bandwidth} \\ d\lambda/\lambda$
- \rightarrow Temporal and spatial <u>coherence</u>
- \rightarrow Required time for characterization of a sample

 $F(\lambda) \ge \frac{B(\lambda)\lambda^2}{4}$ $l_{temp} = \frac{\lambda^2}{\Delta\lambda}, f_{coh}$ $\tau \propto \frac{1}{B(\lambda)^2}$

Fourth generation storage ring (SR) light sources and projects are under development, and start a new era, towards the:

Diffraction-Limited Storage Ring (DLSR)

at a given λ

BRILLIANCE AND PHOTON BEAM SIZES

Maximum brilliance of a Gaussian photon beam from an undulator of N periods, length L, for an odd harmonic *n*: Photon flux — Wavelength

$$B_n^{max} \simeq \frac{\frac{NF_n(\lambda)}{(2\pi)^2 (\Sigma_x \Sigma_{x'}) (\Sigma_y \Sigma_{y'})}}$$

L, Hoummi / TOWARDS A TRUE DIFFRACTION LIMITED STORAGE RING LIGHT SOURCE / IPAC23. May 7-12 2023. Venice. ITALY

ORIGIN OF THE NATURAL HORIZONTAL ELECTRON EMITTANCE

•

٠

•

٠

THE FOURTH GENERATION OF STORAGE RING LIGHT SOURCES

L. Hoummi / TOWARDS A TRUE DIFFRACTION LIMITED STORAGE RING LIGHT SOURCE / IPAC23, May 7-12 2023, Venice, ITALY

To increase both DA and lifetime, linear optics include nonlinear compensation into their designs:

High-Order Achromat (HOA)

Cancellation of lowest RDT orders over a cell with tight control of the phase advance of each unitcell

Local correction of the chromaticity.

MAX IV, SOLEIL II, SLS 2.0, ...

 $\left(\boldsymbol{\nu}_{x}^{c},\boldsymbol{\nu}_{y}^{c}\right)=\left(\frac{p}{M},\frac{q}{M}\right),\ \boldsymbol{p}\wedge\boldsymbol{q}=1$ for a MBA lattice

Optimal reduction of the beam size in the LGB thanks to RBs (SLS-2) B. Riemann, A. Streun, arXiv:1810.11286v1, 2018

Hybrid Multi-Bend Achromat (HMBA)

-I transformation

FROM ESRF TO EBS

 ϵ_r^{nat} : 3985 \rightarrow 133 pm.rad Number of dipoles per cell: $2 \rightarrow 7$ \approx 20% reduction in electricity costs

Off-energy operation of its booster 10^{20-22} brilliance in IDs Factor 10 gain in coherence

ESRF

Raimondi, P., et al. Commun Phys 6, 82 (2023). https://doi.org/10.1038/s42005-023-01195-z

Scheme widely adapted to different light sources: APS-U (H7BA+RB), PETRA IV (H6BA), HEPS (H7BA+RB), ... Further reduction of emittance with RB at the cost of LT and DA

9

Dipole

Inserted

2D2E 2F1E

 $\epsilon_{x=y} = \frac{J_x}{I_x + I_y} \epsilon_0$

20

QF

SD1D 205D 205D AF4D SF2E 0F4E 0F2E 0F2E SD1E SD1E SD1E OD3E OD1E

Coupled round beam

15

Quadruple Sextupole

Octupole

Decapole

0.05

dispersion [m]

A close to "diffraction-limit" hard X-ray lattice proposal : $\epsilon_x = 10$ pm.rad for a 6 GeV, 1656.5 m circumference, optimized for large DA and large beam lifetime

Standard cells: H6BA lattice with:

- Longitudinal gradient Dipole Quadrupole + split bend
- Ultra-low emittance (< 40 pm.rad) thanks to a large SR •

-*I* transformation

+ dispersion bumps

s [m]

Beam matching ($\beta_x = \beta_y = 2.5$ m)

OD1A SD1A SD1A SD1A SD1A OF2A OF2A OF2A OF4B DECF SD1B SD1B

25

20

15

፲ ፪ ፻

Inserted QF

QF1A QD2A

5

Damping wigglers

PETRA III, NSLS II, PETRA

IV, SSRL-X, SPring-8-II, ...

 $\epsilon_h = 38.4$ pm.rad **HMBA** lattice -I transformation

 $\epsilon_h = 20.1 \text{ pm.rad}$ **Radiation damping** H emittance stabilization Less space for IDs Less beamlines Increased losses and operation costs

Dispersion bumps

Large number of cells

```
\epsilon_h \geq 10 pm.rad
```

Coupling resonance

Reduced horizontal beam size **Reduced horizontal particle** density

The European Synchrotron

10 L. Hoummi / TOWARDS A TRUE DIFFRACTION LIMITED STORAGE RING LIGHT SOURCE / IPAC23, May 7-12 2023, Venice, ITALY

10

Scaling of the H6BA cell for different circumferences S.M. Liuzzo, MOPA144

From bi-pole bending magnets to multipole bending magnets: the Complex Bend (CB)

Option for NSLS II upgrade:

Triple Complex Bend Achromat (TCBA), 3 GeV, 792

m, 30 cells, reaching 23 pm.rad natural emittance

Correction of RDTs and ADTS with octupoles for CB lattices \rightarrow F. Plassard *et al.*, 2021

https://journals.aps.org/prab/cited-by/10.1103/PhysRevAccelBeams.22.110703

11

E the beam energy, N_d number of CB and N_p number of poles per CB.

NSLS-II upgrade with CBs: 30 cells x 4 dipoles x ~10 poles \approx 1200 poles

Gradients of 130 T/m are required (PM Bend/Quad)
 Small apertures and heat load from synchrotron radiation are being assessed

• Full-scale CB element prototype (S. Sharma, IPAC22)

https://www.osti.gov/servlets/purl/1504393

L. Hoummi / TOWARDS A TRUE DIFFRACTION LIMITED STORAGE RING LIGHT SOURCE / IPAC23, May 7-12 2023, Venice, ITALY

A close to diffraction limited hard X-ray lattice proposal : $\epsilon_x = 16$ pm.rad – with IBS, for a 3 GeV, 528 m circumference, pushing the limits of the MBA lattice.

E	3 GeV		
С	528 m (20 periods)		
$(\boldsymbol{Q}_{\boldsymbol{X}}, \boldsymbol{Q}_{\boldsymbol{Y}})$	(101.2, 27.28)		
ϵ_x^{nat}	16 pm.rad		
α _c	$5.3 imes10^{-5}$		
$(\boldsymbol{\beta}_{x}, \boldsymbol{\beta}_{y})_{ID}$	(3.3,3) m		
σ_{E}	$9 imes 10^{-4}$		

High-gradient magnets ($\simeq 200$ T/m, $\simeq 34$ kT/m²) \rightarrow PM, small gap, cross-talks, small vacuum chambers \rightarrow pumping, coating, Low DA, low lifetime, on-axis transparent injection scheme, Low momentum compaction factor, IBS, Harmonic Cavity, ...

MBA challenges pushed to the limits !

THE FOURTH GENERATION OF SR: CHALLENGES

PERMANENT MAGNETS (PM)

Motivation: Achieve high-gradient and Combined-Function magnets (dipoles-quadrupoles) in compact lattices while maintaining a minimum gap for vacuum specifications (coating, pumping, lifetime).

ESRF-EBS DL module

15

7.7 GWh yearly savings in electricity with EBS magnets

Environmental impact PM vs EM? **Production costs and** impact, operational costs, performances, lifetime, CO₂ emissions, J. Dreikorn, WEPM133 etc.

RF-EBS	Advantages	Challanges	ZEro Powe	
module	Auvantages	Chanenges	quadrupole ir	
2 102 A	High-gradients	Fixed field (correctors),		
	Compactness (no coils,	tunability (motorized		
	no yoke)	poles)		
	Reliability	Temperature stability	3 · ()	
	Less control systems	(shunts, control),	may made -	
	Low operational costs	Field homogeneity,	EFROQS A -	
	(no cooling, no current)	Commissioning (first turns)	Tanogo A.	
7 GWh yearly savings in	Low operational	Demagnetization		
ctricity with EBS magnets	environmental impact			
	PETRA IV	M. Gehlot, WEPM100		
nvironmental impact	Longitudinal gradient DQ m	nodule		
PM vs EM ?			$g_2^{max} =$	
duction costs and	Soft iron parts		A. Brainbri	
pact. operational	DLQ1 module	z	•	
sts performances	$g_2 = -11.3/-8.6 \text{ I/M}$		G.W. Fo	
time CO emissions	101 0.22 10 0.23 1		Sweden	
cme , CO_2 emissions,	Permanent 🚤			
J. Dreikorn, WEPM133	magnet arrays			
L. Hoummi / TOWARDS A TRUE DIFFRACTION LIMITED STORAGE RING LIGHT SOURCE / IPAC23, May 7-12 2023, Venice, ITALY				

ZEro Power Tunable Optics (ZEPTO): quadrupole in place in DIAMOND II booster to SR transfer line

 $g_2^{max} = 60 \text{ T/m}$

A. Brainbridge, IPAC22 talk, Bangkok, 2022

G.W. Foster et al., EPAC98, Stockholm, Sweden, 1998 C. Benabderrahmane, IPAC17, talk

CROSS-TALKS

Problematic: neighboring magnets are influenced by each other's magnetic field

Case of the ESRF-EBS

- Discovered during commissioning
- Strong impact (max. 1.8%) in quadrupole strengths
- Cross-talk model implemented in the theoretical ring for optics correction
- Good agreement between measurements and simulations

G. Le Bec, et al., PRAB 24, 072401, 2021, doi= 10.1103/PhysRevAccelBeams.24.072401

Cross-talk considered for all upgrade projects

- Evaluation of magnet strengths variations
- Subsequent lattice design (distance between coils/magnets)
- Design of magnets
- PM magnets: corrections? Simulations? Redesign?

Cross-talks in this conferenceDedicated posters:on PETRA IVJ. Keil, WEPM032on SPS IIP. Sunwong, WEPM047

Example of the DL-Quadrupole crosstalk at the ESRF-EBS

16 L. Hoummi / TOWARDS A TRUE DIFFRACTION LIMITED STORAGE RING LIGHT SOURCE / IPAC23, May 7-12 2023, Venice, ITALY

BUNCH LENGTHENING

<u>Multiple motivations</u>: Reduce the particle density per bunch for <u>higher TL</u>, <u>reduced IBS growth rate</u>, $\propto \frac{1}{E^4}$, reduce the <u>beam-induced heating</u> in high current per bunch operation modes, transverse stabilizing effect.

17 L. Hoummi / TOWARDS A TRUE DIFFRACTION LIMITED STORAGE RING LIGHT SOURCE / IPAC23, May 7-12 2023, Venice, ITALY

INJECTION SCHEMES FOR ULTRA-LOW EMITTANCE LATTICES

Challenges:

- Small DA, low beam lifetime (even with HC), •
- Different operation modes, bunch currents •
- Top-up, frequent injections, stored beam • perturbations

Standard off-axis injection ESRF-EBS, PETRA IV, ...

Requires large horizontal DA (\geq 5 mm) at the injection point \longrightarrow High β_x injection cells

Targets:

- Inject in a small DA and low lifetime lattice
- Compatible with different operation modes •
- No perceived perturbation to the stored beam •
- **Towards 100% injection efficiency** •

Aperture sharing injection SLS 2.0, DIAMOND II

Relaxed <u>DA condition</u> ($\approx 2 - 3 \text{ mm}$) at the injection point

- Kick the stored and injected beam
- **Betatron oscillations**
- Perturbations limited only to a couple of bunches

TRANSPARENT INJECTION SCHEMES FOR ULTRA-LOW EMITTANCE LATTICES

Swap-out injection APS-U, ALS-U, HEPS

+ flat-top kicker for bunch train
+ short-pulse kicker for bunch by bunch (a few ns)

Full charge injector required esp. for high-current per bunch modes – no accumulation in the SR possible

- Stored → Additional accumulator ring bunch for fully charged bunches (ALS-U)
 - → Full charge booster with low emittance (HEPS)

MAX IV, SOLEIL II, ...

Longitudinal injection SLS 2.0, ... Beam injected longitudinally at $\phi = \pm \pi$

→ Momentum acceptance
 → Golf club thickness
 measurement at BESSY II
 P. Kuske, J. Li, PRAB, 2020

SLS 2,0 + < 2ns kicker + 1ns delay between injected and stored bunches A. Streun, IPAC22, TUPOST032 From M. Aiba, PRAB, 18, 020701 (2015)

Injected beam $\phi = \pm \pi$

Non-Linear Kicker (NLK) injection principle

Replace the 4-kicker bump with a single NLK with septum.

Multipolar field profile, with flat potential for the stored beam

19 L. Hoummi / TOWARDS A TRUE DIFFRACTION LIMITED STORAGE RING LIGHT SOURCE / IPAC23, May 7-12 2023, Venice, ITALY

Multipole Injection Kicker (SOLEIL-MAX IV collaboration) In operation at MAX IV since 2019

Test of MIK in SOLEIL

Off-axis injection with the MIK

Reduction of stored beam residual betatron oscillations compared to the standard four kicker bump

SOLEIL II off-axis injection requirement:

- •MIK (type D) in-vacuum, 5 modules for off-axis injection
- Magnetic peak field at x = -3.5 mm (instead of -10 mm for the MAX IV-SOLEIL collaboration)
- Two mobile conductors for fine tuning of the flat potential at x = 0 mm

R. Ben El Fekih, THPA175

ESRF

LATTICE ADAPTATIONS TOWARDS HIGHER BRILLIANCE

Mini- β optics for the ESRF-EBS

S.White, WEPL029

Local reduction of β_{ν} : 2. 7 \rightarrow 1 m for an expected 40% increase in brilliance. Optics tests to be conducted **during 2023**

Off-energy operation mode L. Hoummi, MOPA143

pinhole cell 07

Beam on a dispersive orbit: HG quadrupoles provide extra damping: 220

Injection in such optics difficult

- 1st turn threading needed to achieve
 - initial capture (with Dipole Kicker (DK))
- **Optics characterization at low current** — η_x • Accumulation demonstrated (> 5 mA) with the combined use of DK and MIK

×10⁻⁴

10.5

10

8.5 500

Fourth generation storage ring light sources are increasing their diffraction-limited photon energy, with upgrades approaching the:

Diffraction-limit condition for a 1 keV photon beam: $\epsilon_x \ll 80$ pm.rad

Several challenges to be overcome and mastered: DLSR at 10 keV one step closer !

Large storage ring light sources

• Larger storage ring to reduce the bending angle

- Relaxed optics, gradients, high DA, LT
- High-number of magnets, operational costs, environmental impact of such accelerators

Miniaturized SR elements

- Compact permanent and tunable magnets with high-gradient, multiple-function magnets, in-vacuum and coated?
- In-vacuums IDs for high-brilliance photon beams
- Towards in-vacuum SR?

Yet, global challenges are to be added on top!

ENERGY, ENVIRONMENTAL AND CLIMATE CRISIS

Increased electricity costs

Increased resources costs: helium, computing goods, raw materials,

Increased prices Shortages Accidents Geopolitics

Socio-economic crisis

Climate change

Several facilities had to adapt their user mode schedule to cope with the increase of costs in different energy sources:

Extended shutdown, cancelled runs over the cold season

ESRF

The European Synchrotron

Sustainability and environmental impact should

Sustainability Optimisation Sobriety

be at the heart of any development in our Sustainability session research institutes tomorrow morning J.-L. Revol @ 12:10

Time for questions !

Sustainability Optimisation Sobriety Sustainability and environmental impact should

be at the heart of any development in our research institutes

Sustainability session tomorrow morning J.-L. Revol @ 12:10