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Abstract
Current and historic tracking studies of the RHIC accel-

erator lattice find difficulty in explaining the transmission
efficiency of spin polarization from the AGS extraction to
RHIC storage energies. In this paper, we discuss mecha-
nisms that result in resonant depolarizing behavior, beyond
the usual intrinsic and imperfection resonance structures. In
particular, the focus of this paper will be on higher-order
resonances that become apparent in the presence of snakes.
The set of conditions that identify higher-order spin-orbit
resonances are 𝜈 = 𝑗0 + ⃗𝑗 ⋅ 𝑄⃗ for integers (𝑗0, ⃗𝑗) ∈ ℤ4, where
𝜈 is the spin tune and 𝑄⃗ contains the orbit tunes. Note that
we do not use the closed-orbit spin tune 𝜈0 but rather the
amplitude-dependent spin tune 𝜈(𝐽𝑥, 𝐽𝑦, 𝐽𝑧) that depends on
the phase-space amplitudes. While Sibrian snakes keep 𝜈0
at 1/2, the amplitude-dependent spin tune can deviate from
1/2 and can cross resonances during acceleration.

INVARIANT FRAME FIELD
Dynamics of spin motion are described by the T-BMT

equation. For magnetic fields it is:

d𝑆𝑆𝑆
d𝑡 = − 𝑞

𝑚𝛾 [(1 + 𝐺𝛾)𝐵𝐵𝐵⟂ + (1 + 𝐺)𝐵𝐵𝐵∥] × 𝑆𝑆𝑆

In an accelerator, the (static) magnetic fields along the
comoving coordinate system are periodic in space with the
ring’s circumference 𝐶: 𝐵(𝑥, 𝑠+𝐶, 𝑦) = 𝐵(𝑥, 𝑠, 𝑦). However,
in general, the fields along a particle’s trajectory are not peri-
odic with the circumference, 𝐵(𝑥(𝑠 + 𝐶), 𝑠 + 𝐶, 𝑦(𝑠 + 𝐶)) ≠
𝐵(𝑥(𝑠), 𝑠, 𝑦(𝑠)). Therefore, except for a particle travelling
on the closed-orbit, the spin motion is not periodic with 𝐶.
If the T-BMT precession vector is written using action-angle
coordinates, it becomes evident that it is periodic in the or-
bital phases and in the azimuth 𝜃 around the ring. Floquet’s
theorem allows writing the solution as a periodic envelope
with a sinusoidal variation [1]:

𝑆𝑆𝑆 ( ⃗𝐽, ⃗𝜙(𝑠), 𝑠) = 𝑈 ⃗𝐽(𝑠, ⃗𝜙) exp(𝒥𝜈𝜃)𝑈𝑇
⃗𝐽,0𝑆𝑆𝑆0

where 𝜈( ⃗𝐽) is known as an Amplitude-Dependent Spin Tune,
and 𝑈 ⃗𝐽(𝑠, ⃗𝜙) = [𝑢𝑢𝑢1, 𝑢𝑢𝑢2, 𝑛𝑛𝑛] ⃗𝐽 is known as an Invariant Frame
Field, henceforth referred to as an ADST and IFF. There
are situations where an IFF does not exist, such as when the
beam is sitting on an orbital resonance since orbital motion
is unstable in that case. We restrict further discussion to situ-
ations where IFFs do exist. The inverse matrix of the IFF in
above equation transports the initial spin coordinates 𝑆𝑆𝑆0 into
a system in which the spin rotates around the vertical by 𝜈𝜃,
∗ eh652@cornell.edu

before the IFF transports the spin back into the accelerator’s
coordinate system. For polarization, an IFF plays the role
similar to the beta functions.

The axis around which the spin rotates in the IFF is 𝑛𝑛𝑛,
known as the Invariant Spin Field (ISF). It approaches the
closed-orbit 1-turn precession vector 𝑛𝑛𝑛 → 𝑛𝑛𝑛0 as orbital am-
plitudes approach zero. The projection of a particle’s spin
vector onto the ISF, 𝑆𝑆𝑆 ⋅ 𝑛𝑛𝑛 ≡ 𝐽𝑆, has been proved to be an
adiabatic invariant of spin motion [2]. It is the change of
this quantity that is responsible for beam depolarization.

SPIN DEPOLARIZATION
The projection of each particle’s spin onto the ISF is given

by 𝐽𝑆 and is constant during particle motion, as long as the
fields in the accelerator do not change. If the fields change
slowly as compared to the spin precession, for example dur-
ing acceleration, 𝐽𝑆 is an adiabatic invariant, i.e., it generally
changes very little. To analyze in how far 𝐽𝑆 does change
when a parameter 𝜏 of the accelerator changes slowly, we
construct the vector:

𝜂𝜂𝜂 ≡ 1
2 (𝑢𝑢𝑢1 × 𝜕𝜏𝑢𝑢𝑢1 + 𝑢𝑢𝑢2 × 𝜕𝜏𝑢𝑢𝑢2 + 𝑛𝑛𝑛 × 𝜕𝜏𝑛𝑛𝑛) (1)

which satisfies 𝜕𝜏𝑛𝑛𝑛 = 𝜂𝜂𝜂 × 𝑛𝑛𝑛 and similarly for 𝑢𝑢𝑢1 and 𝑢𝑢𝑢2. A
slow increase in energy can be describe by such a parameter
𝜏.

While at fixed energy spins precess around 𝑛𝑛𝑛, changing
energy causes 𝑛𝑛𝑛 to rotate around 𝜂𝜂𝜂 at each point in space,
pushing 𝑛𝑛𝑛 away from the instantaneous spin direction, which
changes 𝐽𝑆. This change of 𝐽𝑆 is especially strong when the
change of 𝜂𝜂𝜂 along a particle’s trajectory is in resonance with
the spin precession around 𝑛𝑛𝑛. For this reason, a frequency
analysis of 𝜂𝜂𝜂 can give insight to depolarizing resonances.

With this in mind, it is those components of 𝜂𝜂𝜂 which
are perpendicular to 𝑛𝑛𝑛 that give rise to perturbations of 𝐽𝑆.
One can associate with each resonance condition 𝜈 ≡ 𝜅 ≡
⃗𝑗 ⋅ 𝑄⃗ mod 1 a resonance strength [3] such that spins obey

the Froissart-Stora formula while ramping across isolated
higher-order resonances. The resonance strength 𝜀𝜅 at a
resonance condition 𝜅 can be defined in terms of Fourier
components of 𝜂,

lim
N→∞

1
2𝜋N ∫

2𝜋N

0
𝜂𝜂𝜂 ⋅ (𝑢𝑢𝑢1 + 𝑖𝑢𝑢𝑢2)𝑒−𝑖𝜅𝜃 d𝜃 (2)

The detailed relation of these coefficients to resonance
strengths will be analyzed in detail in future work.

RESONANCE STRENGTH
We now manipulate the previous expression, Eq. (2), into

an elegant form using only the periodicity conditions of the
IFF. Specifically, while the integrand in Eq. (2) is evaluated
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along the trajectory of a particle, the non-exponential com-
ponent 𝜂𝜂𝜂 ⋅ (𝑢𝑢𝑢1 + 𝑖𝑢𝑢𝑢2) exists independently of the beam and
is periodic in azimuth and betatron phase space:

lim
N→∞

1
2𝜋N ∫

2𝜋N

0
𝜂𝜂𝜂 ⋅ (𝑢𝑢𝑢1 + 𝑖𝑢𝑢𝑢2)𝑒−𝑖𝜅𝜃d𝜃

= lim
N→∞

1
2𝜋N ∫

2𝜋N

0
⎛⎜
⎝

∑
𝑗∈ℤ4

𝜂𝑗 𝑒𝑖(𝑗0𝜃+ ⃗𝑗⋅𝜙⃗)⎞⎟
⎠

𝑒−𝑖𝜅𝜃d𝜃

= ∑
𝑗∈ℤ4

𝜂𝑗 𝛿 (𝑗0 + ⃗𝑗 ⋅ 𝑄⃗ − 𝜅) 1
2𝜋 ∫

2𝜋

0
𝑒𝑖 ⃗𝑗⋅(𝜙⃗(𝜃)−𝑄⃗𝜃)d𝜃

= ∑
𝑗∈ℤ4

𝜂𝑗 ⟨𝑒𝑖 ⃗𝑗⋅(𝜙⃗(𝜃)−𝑄⃗𝜃)⟩ 𝛿 (𝑗0 + ⃗𝑗 ⋅ 𝑄⃗ − 𝜅)

In the last line, we express the 1-turn integral as an average
1

2𝜋 ∫2𝜋
0 ... ≡ ⟨...⟩, since the exponential term is periodic in 𝜃.

The Fourier coefficients 𝜂𝑗 are independent of any particle
trajectories, and are defined as an integral over the 4-torus
𝜙𝜇 ≡ (𝜃, ⃗𝜙) ∈ 𝑇4:

𝜂𝑗 ≡ 1
(2𝜋)4 ∫

𝑇4 𝜂𝜂𝜂 ⋅ (𝑢𝑢𝑢1 + 𝑖𝑢𝑢𝑢2)𝑒−𝑖𝑗𝜇𝜙𝜇
d4𝜙

This expression for resonance strength 𝜀𝜅 that enters the
Froissart Stora formula is useful for analyzing spin dynamics
and for optimizing accelerator lattices for minimal polariza-
tion loss during acceleration. Since Fourier terms of 𝜂𝜂𝜂 are
related to the higher-order resonance strength, they can be
used for accelerator optimization. The IFF is usually attained
through particle tracking, e.g., by stroboscopic averaging.
However, methods that do not require tracking also exist,
e.g., Differential Algebra normal form theory of spin-orbit
motion can also compute 𝜂𝜂𝜂 without the need for tracking.

This nonlinear resonance strength 𝜀𝜅 has several features
that are known from 1st-order resonances: they describe
Froissart-Stora polarization loss while accelerating through
a resonance, and they describe spin tune jumps by 2𝜀𝜅 at the
location of a resonance. This observation yields a method
for computing the resonance strength that is alternative to
analyzing 𝜂𝜂𝜂. One can compute the amplitude dependent spin
tune as a function of energy and observe by how far it jumps
when 𝜈 crosses a resonance condition, this jump is 2𝜀𝜅.
Furthermore, one observes how the amplitude dependent
spin tune changes with energy during the ramp. This gives
the rate of spin-tune change 𝛼. The Froissart-Stora formula
depends on 𝜀𝜅 and 𝛼 and describes depolarization during
crossing of higher-order resonances.

EXAMPLE
In the following section, we find an example higher-order

resonance in RHIC by looking in the region of strong first-
order intrinsic resonances without Siberian snakes. Using
well-established perturbative matrix methods [4], we calcu-
late the resonance spectrum for a particle with normalized
amplitude of 10π mm ⋅ mrad, as shown in Fig. 1.
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Figure 1: Resonance strength 𝜀𝜈0
for equivalence classes

𝜈0 = 𝐺𝛾 ≡ ±𝑄𝑦 mod1 and vertical emittance 𝐽𝑦 = 10π µm.

Turning on the effect of ideal Siberian snakes fixes the
closed-orbit spin tune at 𝜈0 = 1/2, which prevents the
crossing of any 1st-order intrinsic resonances. Neverthe-
less, higher-order intrinsic resonances can be crossed by
large-amplitude particles for which the spin tune deviates
from 1/2 [5]. Polarization tends to be reduced in two energy
regions during the ramps of RHIC. These are energy regions
where strong 1st-order resonances would be crossed without
Siberian snakes.

Upon focusing around the vicinity of the second strongest
of these regions and increasing the vertical emittance, we
find strong dips in the equilibrium polarization of the ISF.
As seen in Fig. 2, associated with these dips are spin tune
jumps whose size determines twice the resonance strength
(at that orbital amplitude).
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Figure 2: Jumps in the ADST (𝜈) in RHIC for a particle
with 40 µm vertical emittance.

While in other regions the ADST is a smooth function
of energy, here several jumps can be observed, showing
that nonlinear depolarizing resonances are crossed, even
though the closed orbit spin tune 𝜈0 remains 1/2 at all times.
Resonance conditions are indicated by horizontal lines, and
it is evident that the spin tune jumps symmetrically across
resonance lines.
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Finally, in Figs. 3 and 4, we present the ISF at the azimuth
of IR6 overlayed on the unit sphere as a function of vertical
betatron phase 𝑛𝑛𝑛(𝜙𝑦) at a non-resonant as well as a resonant
energy. These plots showcase the lowering of equilibrium
polarization as the beam approaches a generic higher-order
resonance condition. It is interesting to note that due to the
midplane symmetry of the RHIC lattice, one can see the
symmetry of the ISF under reflection 𝜙𝑦 → −𝜙𝑦 in these
figures. This particular feature allows RHIC to avoid all
even higher-order resonances.

Figure 3: The ISF away from resonance at 𝐺𝛾 = 385.3 and
vertical emittance 𝐽𝑦 = 10π µm.

The fact that higher-order depolarizing resonances can be
computed with the presented method may give a handle for
advanced accelerator optimization. One now can optimize
designs in order to reduce the critical 𝜀𝜅.
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Figure 4: The ISF in the immediate vicinity of resonance at
𝐺𝛾 = 386.4 and vertical emittance 𝐽𝑦 = 10π µm.

CONCLUSION

In this paper, we present a framework for identifying
higher-order resonances and calculating resonance strength.
Standard methods for calculation the invariants spin field typ-
ically depend on particle tracking, for example by means of
stroboscopic averaging [2], but tracking-independent meth-
ods are also available, e.g., Differential Algebra normal form
theory.

Computing the most critical higher-order spin-orbit reso-
nance strength with Siberian snakes opens opportunities for
advanced accelerator optimizations for the maximization of
high-energy polarization.
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