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Abstract
The reinforcement learning(RL) algorithm is applied to

control the accelerator, with the aim of improving the trans-
mission efficiency of the radio frequency quadrupole (RFQ)
to achieve high beam intensity, reducing the debugging time,
and improving the operation efficiency of the accelerator.
To obtain high beam intensity, the RFQ transmission effi-
ciency is crucial. A neural network model is established to
partially replace the Tracewin software used for RL training.
The soft actor-critic (SAC) algorithm trained on the neu-
ral network model successfully achieves RFQ transmission
efficiency above 95% under different circumstances by con-
trolling the low-energy beam transport (LEBT) solenoids.
The accelerator control based on reinforcement learning has
good generalization ability to cope with changes in differ-
ent circumstances, and so has great potential in accelerator
control.

INTRODUCTION
The light particle injector is a prototype accelerator of

Light Particle Injection Platform for high-current particle
injection, it can effectively accelerate proton beams of 10
mA and 1.5 MeV continuous wave, as well as milliamp-level
helium beams of 6 MeV continuous wave. As shown in the
Figure 1, The Light Particle Injection Platform consists of
LEBT, RFQ, the beam control system, and the experimental
target station, is an ideal research platform for semiconductor
irradiation on a scale of several tens of micrometers. For this
platform, achieving high beam currents is a crucial goal, and
one of the key factors for achieving it is ensuring good config-
uration of the LEBT to improve the transmission efficiency
of the RFQ. Recently, machine learning(ML) algorithms are
widely used in accelerator beam commissioning areas [1, 2],
such as machine learning-based beam orbit control [3] and
longitudinal control of electron beams [4].

Figure 1: Layout of the Light Particle Injection Platform.
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The desired target of RL to control LEBT elements is to
achieve RFQ transmission efficiency above 95% constrained
by LEBT efficiency above 75%. Results show method can ef-
fectively meet target without repetitive operation like manual
adjustment or scanning and retraining strategies for different
intensities or twiss parameters. Ultimate aim is verifying
RL-trained agents’ feasibility in optimizing light particle
injector efficiency via simulations. During RL training, ad-
justing hyperparameters requires thousands of interactions.
Initially, TraceWin was used but 4 minutes per interaction
made adjusting one hyperparameter take about 40000 min-
utes (assuming 10000 interactions needed after each adjust-
ment), which is unacceptable.

To address this, a NN model was built using Tracewin-
generated data, replacing it as the interactive training en-
vironment, as illustrated in Figure 2. With each hyperpa-
rameter adjustment, training time was reduced to tens of
minutes, substantially cutting RL training duration. Valida-
tion done on Tracewin, testing generality by varying beam
intensity/twiss parameters and adding space charge effects.
Next step involves experimental verification and applica-
tion on real Light Particle Injection Platform for operational
efficiency improvement.

METHOD
Reinforcement Learning

Figure 2: Training process and future plan.

The transmission efficiency regulation of RFQ is a typical
optimization problem, where the goal is to achieve high trans-
mission efficiency of RFQ by adjusting the current intensity
of LEBT solenoids. Reinforcement learning is applicable
for solving this problem. As illustrated in the Figure 2, RL
is composed of five essential components, namely the agent,
environment, state, action, and reward. The agent interacts
with the environment through actions, receives feedback,
and accumulates rewards over time through trial and error,
with the objective of maximizing the expected cumulative
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reward in the future and improving its action policy. The
present work utilizes the maximum entropy reinforcement
learning algorithm - SAC algorithm, which belongs to the
actor-critic framework [5] [6] and is a reliable and efficient
approach.

Relational Mapping Substitution Based on NN
The operation of beamline LEBT and RFQ were simu-

lated with Tracewin software on a server with an eight-core
CPU, with an initial particle count of 10,000. However,
each simulation process took about 4.5 minutes, which was
too slow for RL training and could not meet the training
requirements of RL. Therefore, we collected 10,000 sets of
data generated by Tracewin and used a simple NN to im-
plement an alternative mapping of the relationship between
the current values of the two LEBT solenoids and the beam
intensity at the exit of LEBT and RFQ.

The model takes the current values of two solenoids as
input and outputs the beam intensity at the exit of LEBT and
RFQ. It comprises an input layer, an output layer, and two
hidden layers, each with 16 nodes.

Figure 3: Training process of the neural network.

In this study, 10,000 Tracewin-generated datasets were
used, allocating 8,000 for training and 2,000 for testing. Dur-
ing training process, as shown in Figure 3, mean squared
error (MSE) was used as the loss function for neural network
regression task evaluation. MSE is computed by squaring
difference between predicted and true values, averaging it.
Aim is to minimize sum of squared errors to make model
predictions closer to actual values. Loss converged to 0.0182
after 1600 training sessions. During testing, NN model’s
coefficient of determination was 0.9871, a performance in-
dicator used for evaluating fitting performance of regression
models in neural networks, ranging between 0-1. indicates
proportion of variance in dependent variable accounted for
by independent variables. The closer it is to 1, the better the
fit of the model.

Environment and Training
Two interactive environments were constructed to inter-

act with agent: the first based on TraceWin, used for RL
policy training and NN model reliability testing. To inte-
grate it with environment that can communicate with agents,
a Python wrapper was developed using OpenAI Gym [7].
However, due to lengthy Tracewin-based training process,

an NN model was created as training environment and inter-
acted via function calls in Python. Hyperparameters/reward
functions adjusted multiple times to train appropriate rein-
forcement learning strategy.

During policy training, RL agent trained from same ini-
tial state: 5mA beam current delivered to LEBT entrance,
solenoid coils initialized with SOL_CUR1 and SOL_CUR2
both set to 180.5A. Currents range from 133A to 228A, de-
termined by Light Particle Injection Platform’s safety range
engineering design value. Policy training divided into ex-
ploration and evaluation stages. Exploration stage involves
agent randomly trying different actions to discover rewards
and states, while evaluation stage entails agent using learned
strategy to perform tasks and computing average cumulative
reward as performance metric. These two stages alternate
and gradually learn optimal strategy. Exploration stage set
to 5000 time steps, evaluation occurred every 1000 steps.
Maximum time step for desired target search set to 50, mean-
ing agent will stop at the 50 time step or the step which
completed task.

Reward Function and Hyper-parameters
The reward function maps the states and actions of an

agent to a scalar value, quantifying the desirability of the
selected action towards achieving task objectives. By receiv-
ing reward signals from the environment, the agent adjusts
and learns how to maximize the long-term cumulative dis-
counted rewards in order to achieve the desired target. In
this paper, the setting of reward function was listed in the
following formula:

𝑅𝑒𝑤𝑎𝑟𝑑𝑑𝑒𝑙𝑡𝑎 =
⎧{
⎨{⎩

+0.1, 𝑑𝑒𝑙𝑡𝑎 > 0
−0.3, 𝑑𝑒𝑙𝑡𝑎 < 0

(1)

𝑅𝑒𝑤𝑎𝑟𝑑𝐿𝐸𝐵𝑇 =
⎧{
⎨{⎩

+0.05, 𝑟𝑓 𝑞_𝑖𝑛 > 3
−1, 𝑟𝑓 𝑞_𝑖𝑛 < 3

(2)

𝑅𝑒𝑤𝑎𝑟𝑑𝑅𝐹𝑄 =
⎧{
⎨{⎩

(1 − 𝑇𝑟𝑎𝑛𝑠) × 3, 𝑇𝑟𝑎𝑛𝑠 > 0.9
(𝑇𝑟𝑎𝑛𝑠 − 0.9) × 2, 𝑇𝑟𝑎𝑛𝑠 < 0.9

(3)

In equation (1), 𝑑𝑒𝑙𝑡𝑎 represents the increase in RFQ trans-
mission efficiency from the previous to the current time step.
Based on the value of 𝑅𝑒𝑤𝑎𝑟𝑑𝑑𝑒𝑙𝑡𝑎, if the current transmis-
sion efficiency is higher than the previous step, the agent is
rewarded, otherwise it is punished. Equation (1) is employed
to guide the agent to gradually improve the RFQ transmis-
sion efficiency. In equation (2), the 𝑅𝑒𝑤𝑎𝑟𝑑𝐿𝐸𝐵𝑇 reflects the
agent’s performance in optimizing the beam current at the
exit of the LEBT system. If the beam current exceeds 3 mA,
the agent receives a reward, otherwise it is penalized. This
reward function is adopted to prevent excessive beam losses
in the LEBT system.

Q-value function in RL evaluates long-term expected re-
turn for taking specific action in current state with discount
factor gamma and learning rate controlling magnitude of
changes in network weights. Reward at each future time step
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multiplied by power of gamma, which gradually decreases
over time steps, allows agent to consider possible future re-
wards while focusing more on immediate payoffs. During
agent training, hyperparameters set as follows: actor and
critic’s neural networks have learning rate of 3 × 10−5. For
SAC algorithm’s Q-value function, gamma was set to 0.98.
A softly update factor of 0.005 used for smoothing the target
network’s update.

RESULT
By utilizing a neural network model as the interactive

environment for training, we obtained a policy that meets
the expected results. As shown in Figure 4, when the initial
values of two solenoid coils are both set to be 180.5A, the
expected goal can be achieved within only 22 steps. After
being validated with Tracewin as the interactive environment,
the goal can be accomplished within only 8 steps, indicating
that the policy obtained by replacing Tracewin with the nn
model as the interactive environment is reliable. Due to
the fact that the training process starts from the same initial
values, the policy is sensitive to the initial values and can
only be solved within the range where the solenoid coil
initially varies between 177.5A-185A.

Figure 4: Testing process on NN and Tracewin.

Figure 5: Test results of different beam intensities of LEBT
entrance.

For Figure 5, it illustrates the performance of the policy
under different entrance beam intensities in LEBT, and the
results indicate that the policy can achieve the desired goal
within a maximum of 8 time steps in this scenario. In Figure
6, Twiss1 corresponds to a beam with AlphaX and AlphaY

Figure 6: Test results of different beam twiss parameters
of LEBT entrance and different space charge compensation
degrees.

both being -1.6 mm/pi.mrad, BetaX and BetaY both being
0.144 mm/pi.mrad; Twiss2 corresponds to a beam with Al-
phaX and AlphaY both being -2 mm/pi.mrad, BetaX and
BetaY both being 0.18 mm/pi.mrad; Twiss3 corresponds to a
beam with AlphaX and AlphaY both being -2.4 mm/pi.mrad,
BetaX and BetaY both being 0.216 mm/pi.mrad. The results
show that the policy can achieve the desired target within
a maximum of 9 time steps in this scenario. In addition,
we tested the policy performance when the space charge
compensation degree was at 87%, 77%, 67%, and 97%, as
illustrated in Figure 6. The results indicate that the policy
can achieve the desired target within a maximum of 8 time
steps when the space charge compensation degree is at 87%
and 77%. However, for the cases with a space charge com-
pensation degree of 67% and 97%, it did not meet the desired
target.

SUMMARY AND OUTLOOK
In this paper, Tracewin was replaced with NN model as

interaction environment to train policy achieving desired tar-
gets, and model’s control optimization ability was verified
on Tracewin. Even under changed beam conditions like en-
trance beam intensity and twiss parameters, policy can still
achieve desired target, demonstrating generality to some ex-
tent. However, policy couldn’t meet desired target with space
charge compensation degree of 67% and 97%, indicating
further hyperparameter and reward function optimization,
or more data for training may be necessary.

Next step is retraining policy to accomplish tasks under
more complex conditions and achieving good performance
through testing on Light Particle Injection Platform.

ACKNOWLEDGMENTS
We would like to express our sincere gratitude to the Large

Research Infrastructures China initiative Accelerator Driven
System Project (Grant No. 2017-000052-75-01-000590) for
their generous support in the completion of this research
work. Their financial assistance has been instrumental in
enabling us to carry out this research successfully.



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPA099

MC5.D13: Machine Learning

2879

WEPA: Wednesday Poster Session: WEPA

WEPA099

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



REFERENCES
[1] A. Edelen et al., “Opportunities in machine learning for particle

accelerators,” arXiv preprint, 2018.
doi:10.48550/arXiv.1811.03172

[2] A. Scheinker, C. Emma, A. L. Edelen, and S. Gessner, “Ad-
vanced control methods for particle accelerators (ACM4PA)
2019,” in Proc. ACM4PA 2019, 2019, pp. 1-24.
doi:10.48550/arXiv.2001.05461

[3] Y. Hitaka et al., “Numerical methods for the orbit control at the
KEK 12 GEV-PS,” in Proc. EPAC’04, Lucerne, Switzerland,
Jul. 2004, paper THPLT073, pp. 2465-2467.

[4] A. Rezaeizadeh, T. Schilcher, and R. S. Smith, “Adaptive robust
control of longitudinal and transverse electron beam profiles,”

Phys. Rev. Accel. Beams, vol. 19, no. 5, pp. 052802, Oct. 2016.
doi:10.1103/PhysRevAccelBeams.19.052802

[5] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-
critic: Off-policy maximum entropy deep reinforcement learn-
ing with a stochastic actor,” in Proceedings of the International
Conference on Machine Learning, 2018, vol. 80, pp. 1861-
1870.

[6] T. Haarnoja et al., “Soft Actor-Critic Algorithms and Applica-
tions,” arXiv preprint, 2018.
doi:10.48550/arXiv.1812.05905

[7] http://gym.openai.com/.



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPA099

2880

MC5.D13: Machine Learning

WEPA099

WEPA: Wednesday Poster Session: WEPA

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


