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Abstract
There are two primary uses of phase space distribution

measurements in particle accelerators. (i) Analysis: features
in the phase space distribution are identified and explained.
(ii) Prediction: particles are sampled from the distribution
and propagated through an accelerator model. Both tasks
are non-trivial in high-dimensional phase space. Here, we
outline our approach to these problems for a high-resolution
five-dimensional phase space measurement at the Spallation
Neutron Source (SNS) Beam Test Facility (BTF).

INTRODUCTION
Research at the Spallation Neutron Source (SNS) Beam

Test Facility (BTF) is aimed at predicting the evolution of
intense hadron beams at the halo level [1]. As part of this ef-
fort, high-dimensional and high-dynamic-range phase space
measurements have been pioneered at the BTF. The first
six-dimensional (6D) measurement was performed at low
resolution as a proof of principle [2]; subsequent studies
have explored various projections and slices of the 6D dis-
tribution in higher resolution and dynamic range [3–6].

Note that the predictive task stated above does not require
analysis of the measured distribution; it only requires that
the distribution be input to a computer simulation. Thus, we
may identify two related but separate uses of phase space
measurements: (i) Analysis: features in the distribution are
identified and explained. (ii) Prediction: particles are sam-
pled from the distribution and propagated through an ac-
celerator model. While previous research at the BTF has
focused primarily on (i), ongoing research is focused on (ii).

Both tasks (i) and (ii) are non-trivial when the phase space
is high-dimensional. In this paper, we outline the approaches
we have used (or plan to use) to address these issues for high-
dimensional measurements at the BTF. We focus on a recent
high-resolution 5D measurement in which the distribution
of longitudinal positions was ignored to enable a dense mea-
surement grid (≈ 645) and high dynamic range (≈ 103)
relative to full 6D measurements. A detailed analysis of this
measurement is contained in [6], and the data is publicly
available at https://doi.org/10.5281/zenodo.7517346. This
paper can be considered supplementary material for [6].
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VISUALIZATION
A measured phase space distribution encodes informa-

tion about the beam dynamics preceding the measurement.
Decoding this information is challenging since 2D projec-
tions mask relationships between three or more variables.
This is illustrated in Fig. 1, which represents a 4D slice of
𝑓 (𝑥, 𝑥′, 𝑦, 𝑦′, 𝑤), our measured 5D distribution. Here 𝑥 and
𝑦 are the transverse positions, 𝑥′ and 𝑦′ are the transverse
slopes, and 𝑤 is the deviation from the synchronous particle
energy. The projection onto the 𝑥-𝑥′ plane is shown on the
bottom right. This projection can be unraveled along the 𝑦/𝑦′

axis, generating the 3D distribution in the bottom row/right
column. Each 3D projection can be unraveled along the
remaining axis, generating the 4D distribution in the main
panel.

The “slice matrix” plot in Fig. 1 uses planar slices of
the distribution to visualize the dependence between the
transverse phase space variables. One important feature is
the bimodal 𝑥 distribution near 𝑦 = 0 in the bottom row.
This feature appears near the synchronous particle energy
(𝑤 = 0). In 5D, we observe this hollowing in 𝑓 (𝑥, 𝑦, 𝑤),
which we expect, due to the strongly correlated longitudinal
phase space at the measurement plane (𝑧 ≈ 𝑤), corresponds
to a spatial hollowing of the 3D distribution 𝑓 (𝑥, 𝑦, 𝑧). In [6],
we argue that nonlinear space charge forces between the
RFQ and the measurement plane drive this hollowing.

Hollowing is also visible in different subspaces. Cathey et
al. [2] discovered a bimodal energy distribution near the cen-
ter of the transverse phase space — a nonlinear correlation
between all five phase space variables. Ruisard et al. [3, 4]
studied this feature in greater detail, benchmarking against
particle-in-cell simulations. We are reasonably certain that
the feature develops in the RFQ, although we do not yet fully
understand the underlying dynamics.

Slice matrices like Fig. 1 can be used to explore the
transverse-energy relationship; however, these figures re-
quire a plethora of subplots and are constrained to 4D slices
of the 5D distribution. Motivated by this difficulty, we have
developed a method of non-planar slicing. The method is a
generalization of a radial density plot, where the density on a
sphere of radius 𝑟 is plotted as a function of 𝑟. Here, 𝑟2 = x𝑇x
for coordinate vector x = [𝑥1, … , 𝑥𝐷]𝑇; ellipsoids may be
used instead of spheres to account for linear correlations in
the data, in which case 𝑟2 = x𝑇Σ−1x for covariance matrix
Σ. Our proposal is to display the distribution in one sub-
space on a surface in a different subspace. For example, one
could define surfaces of radius 𝑟 in the 𝑥3-… -𝑥𝐷 plane, then
visualize the 𝑥1-𝑥2 distribution, integrated over each surface,
as a function of 𝑟; i.e., compute 𝑓 (𝑟(𝑥3, … , 𝑥𝐷), 𝑥1, 𝑥2). If
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Figure 1: Dependence of the 𝑥-𝑥′ distribution (near 𝑤 = 0) on 𝑦 and 𝑦′. The subplots corresponding to each distribution
share the same color map. The following density contours are displayed: 10−3.0, 10−2.5, 10−2.0, 10−1.5, 10−1.0, 10−0.5.

𝑓 (𝑥3, … , 𝑥𝐷) has ellipsoidal symmetry, the low-dimensional
distribution will be sufficient to characterize the dependence
of the 𝑥1-𝑥2 distribution on the amplitude in the 𝑥3-… -𝑥𝐷
plane. We call these slices non-planar to distinguish them
from conventional slices, which are defined by the intersec-
tion of orthogonal (𝐷-1)-dimensional planes.

Other surfaces, such as surfaces of constant density, can
be used if the projections lack ellipsoidal symmetry; in the
example above, the ellipsoids in the 𝑥3-… -𝑥𝐷 plane would
be replaced by the density contours of 𝑓 (𝑥3, … , 𝑥𝐷). The
surfaces can also be generalized to volumes, e.g., by select-
ing the region between two nested ellipsoids. In Fig. 2, we
apply non-planar slices to our 5D distribution, mapping the

dependence of the 𝑦-𝑤 distribution on 𝑥-𝑥′-𝑦′. Each subplot
is the projection within a “shell slice” defined by two density
contours of 𝑓 (𝑥, 𝑥′, 𝑦′). The slice selects large-amplitude
particles on the left and small-amplitude particles on the
right. The energy distribution transitions smoothly from
unimodal to bimodal.

Non-planar slices may also be used to interpret simulation
data. Since 6D histograms are typically very sparse, many
particles are needed to view multi-dimensional features such
as the hollowing described above. Non-planar slices may
increase the visibility of such features with fewer particles.
They may also simplify the visualization of the beam halo
in four- or six-dimensional phase space.
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Figure 2: The 𝑦-𝑤 distribution as a function of the density
in the 𝑥-𝑥′-𝑦′ plane. The top row displays the density range
corresponding to each 𝑦-𝑤 projection, with 𝑓 (𝑥, 𝑥′, 𝑦′) nor-
malized to the range [0, 1].

RECONSTRUCTION
To use phase space measurements for predictive purposes,

we must be able to draw samples from a distribution function
that is consistent with our data. In this section, we briefly
chart our progress on this topic.

Interpolation
For simplicity, we neglect the finite slit widths and

assume the measurement data is a set of intensities
{𝑓 (x1), … , 𝑓 (x𝑁)}, where x = [𝑥, 𝑝𝑥, … ]𝑇 is the 𝐷-
dimensional phase space coordinate vector. The reconstruc-
tion of the phase space distribution 𝑓 (x) is an interpolation
problem. Linear interpolation is (in our experience) infeasi-
ble for large data sets when 𝐷 > 3. Fortunately, the points
{x𝑖} are often on (or almost on) a regular grid, allowing
us to build enormous density arrays from a series of 1D
interpolations.

Unstructured data could result from irregular (non-
rectilinear) scan patterns. Irregular scan patterns have been
suggested (although not yet pursued) to reduce the execution
time of 6D scans. Thus, it may be desirable to develop a
more general interpolation method. We are considering two
approaches. The first approach is to train a neural network
to predict the density 𝑓 (x) at point x. This straightforward
approach shows promise in 3D; further testing is required
for larger data sets. Another approach is to fit a normalizing
flow [7] to the data. This approach is attractive because
sampling from a normalizing flow is trivial. Normalizing
flows are usually trained on sample data or a known distri-
bution function rather than a discrete number of intensity
measurements. Initial attempts to train a continuous normal-
izing flow on such data have been unsuccessful, but further
investigation is warranted.

Combining Measurements
If the 6D distribution is not measured directly, it must

be reconstructed from lower dimensional projections. The
simplest case is when the projections are independent, i.e.,
{𝑓 (𝑥, 𝑝𝑥), 𝑓 (𝑦, 𝑝𝑦), 𝑓 (𝑧, 𝑝𝑧)}. More interesting cases occur
when the projections share coordinates or represent non-
orthogonal planes. As a practical example, consider the
problem of combining 𝑓 (𝑥, 𝑝𝑥, 𝑦, 𝑝𝑦, 𝑝𝑧) with 𝑓 (𝑧, 𝑝𝑧) — both

of which can be measured at much higher resolution than
the full 6D distribution at this time.

The example just mentioned has the following maximum-
entropy solution:

𝑓 (𝑥, 𝑝𝑥, 𝑦, 𝑝𝑦, 𝑧, 𝑝𝑧) = 𝑓 (𝑥, 𝑝𝑥, 𝑦, 𝑝𝑦, 𝑝𝑧)
𝑓 (𝑧, 𝑝𝑧)

𝑓 (𝑧) . (1)

A memory-efficient way to obtain this solution is to sam-
ple points {𝑥𝑖, 𝑝𝑥𝑖, 𝑦𝑖, 𝑝𝑦𝑖, 𝑝𝑧𝑖} from 𝑓 (𝑥, 𝑝𝑥, 𝑦, 𝑝𝑦, 𝑝𝑧), inter-
polate 𝑓 (𝑧, 𝑝𝑧) to obtain 𝑓 (𝑧 ∣ 𝑝𝑧𝑖), then sample 𝑧𝑖 from
𝑓 (𝑧 ∣ 𝑝𝑧𝑖). This method preserves the detail in the 5D mea-
surement and extends to other projections involving 𝑧, such
as 𝑓 (𝑥, 𝑝𝑥, 𝑧, 𝑝𝑧). Although Eq. (1) does not inject correla-
tions between 𝑧 and the transverse phase space coordinates,
it may suffice for BTF studies due to the absence of longitu-
dinal focusing in the BTF lattice.

A general solution to the “in-place” reconstruction prob-
lem may be possible using variants of recently proposed
tomography algorithms. In [8], a neural network was trained
to predict the 4D distribution from compressed 2D projec-
tions; perhaps such a model could be extended to 6D. Alter-
natively, training a generative model on projections may be
possible, as in [9]. There are various issues facing this type
of reconstruction that we do not mention here.

Sampling
Once a distribution function 𝑓 (x) is known, we must draw

samples from it. The simplest solution is grid sampling,
where 𝑓 (x) is evaluated on a regular grid and treated as a
histogram. Bins are randomly selected under the discretized
distribution function and samples are drawn from a uniform
distribution within each bin. This eventually produces a
“checkerboard” density. The checkerboard effect can be
reduced by using a high grid resolution and adding noise
to the samples. This method has been tested on our high-
resolution 5D measurement. Grid sampling is not ideal for
typical measurements when 𝐷 = 6 due to severe limitations
on the grid resolution. Normalizing flows, which have been
used to represent complex, high-dimensional Boltzmann
distributions [10], are a promising alternative.
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