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Abstract
The recent development of advanced black box opti-

mization algorithms has promised order of magnitude im-
provements in optimization speed when solving accelerator
physics problems. However in practice, these algorithms
remain inaccessible to the general accelerator community,
due to the expertise and infrastructure required to apply them
towards solving optimization problems. In this work, we
introduce the Python package, Xopt, which implements a
simple interface for connecting arbitrarily specified opti-
mization problems with advanced optimization algorithms.
Users specify optimization problems and algorithms with
a minimal Python script, allowing flexible interfacing with
both experimental online control systems and simulated de-
sign problems, while minimizing the need for algorithmic
expertise or software development. We describe case-studies
where cutting-edge Bayesian optimization and genetic algo-
rithms implemented in Xopt are used to solve online control
and accelerator design problems. The same algorithms are
also used to solve simulated optimization problems in high
performance computing clusters using the same interface.

INTRODUCTION
The need to solve complex optimization problems is

widely prevalent in the field of accelerator physics. For ex-
ample, accelerator control parameters must be tuned during
accelerator operations to improve performance (so-called
“online” tuning) or accelerator design parameters must be op-
timized in simulation to implement novel operational modes
(“offline tuning”). These problems can be solved using a
wide variety of conventional optimization algorithms, in-
cluding Nelder-Mead Simplex [1] and Robust Conjugate
Direction Search [2]. In addition, evolutionary algorithms,
such as NSGA-II [3], can leverage the power of parallelized
computation to solve multi-objective optimization problems.
More recently, advanced machine learning based algorithms
have been used to solve both online and offline accelerator
optimization problems, most notably Bayesian Optimization
(BO) [4, 5].

Current attempts of applying optimization methods to-
wards solving accelerator physics problems has been done
in an ad hoc way, with individual teams re-implementing
the same optimization algorithms for specific use cases.
This needlessly “reinvents the wheel”, wasting significant
amounts of time and expertise, makes it difficult for non-
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experts to use advanced algorithms to solve their specific
optimization problems, and prevents the use of meaningful
standard benchmarks to compare new algorithms against.
To address these issues, we have developed a Python-based,
modular framework called Xopt [6] that provides a uniform
framework for implementing and applying optimization al-
gorithms to arbitrary problems in experiment or simulation.
Furthermore, Xopt aims to enable user-friendly, “off-the-
shelf” application of advanced algorithms towards solving
accelerator physics optimization problems, while allowing
easy customization for specific problems by advanced users.

XOPT OVERVIEW
Xopt breaks down optimization problems into three mod-

ular components contained in the main Xopt class, as shown
in Fig. 1. The VOCS class defines the optimization space,
including the variables, objectives, constraints and constants
(statics). The Evaluator class defines how to evaluate ob-
jectives and constraints given points passed to it using serial
or parallel (multithreading, MPI etc.) processes. Finally, the
Generator class implements the optimization algorithm,
and is used to generate points in variable space to be eval-
uated. The main Xopt class choreographs the execution
and communication between these three modules in order to
perform an optimization cycle with the step() command.

This modular, object-oriented approach enables easy mod-
ification and customization of optimization routines for spe-
cific use cases. For example, the same optimization algo-
rithm can be applied to both simulation and experiment, or
shared between different accelerator facilities by swapping
out the Evaluator object. On the other hand, generators
can also be swapped out to compare the performance of dif-
ferent algorithms on the same optimization problem. These
objects can also be sub-classed to customize evaluation or
generation of points to solve specific problems.

Optimization algorithms are defined by Generator ob-
jects, which are used to generate future points to be evaluated
by calling their generate() method. While users are free to

Figure 1: Normal control flow structure of Xopt.
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implement their own optimization algorithms, Xopt comes
pre-packaged with a number of conventional and advanced
optimization algorithms tuned by experts to be applicable
to a wide variety of optimization problems “off-the-shelf”.
Currently these algorithms include

• Autonomous Characterization

– Bayesian Exploration [7]

• Single Objective Optimization

– Nelder-Mead Simplex [1]
– Robust Conjugate Direction Search [2]
– Extremum Seeking [8]
– Upper Confidence Bound BO [9]
– Expected Improvement BO [10]
– Trust Region BO [11]
– Multi-fidelity BO [12]

• Multi-Objective Optimization

– Continuous NSGA-II [13]
– Expected Hypervolume Improvement BO [14]
– Multi-Generation Expected Hypervolume Im-

provement BO [15]
– Muli-Fidelity Expected Hypervolume Improve-

ment [12]

These generators can be used or modified via Python code
inside or outside of Xopt.

Xopt communicates with experimental or computational
systems by a single, user-provided evaluate function
passed to the Evaluator class. An evaluate function is re-
quired to receive a dictionary corresponding to points that
should be evaluated and returns a dictionary of evaluated
outputs. This greatly simplifies sharing the same algorithms
between arbitrary optimization problems, as this Python
function handles specific code required to interface with
specific accelerator control systems or simulation codes. An
example of interfacing with a simple EPICS control system
is shown in Fig. 2. One additional benefit of this evaluation
method is the ability to track inputs and outputs that do not
participate in optimization, such as additional simulation
outputs or evaluation time.

Finally, Xopt can be configured and run through a text
based interface. This is useful for running large scale com-
puting workflows at high performance computing clusters, or
interacting with control system user interfaces. In addition,
after every evaluation Xopt can optionally dump the data and
configuration of VOCS, the Generator and the Evaluator
objects to a human readable text file. The text interface
of Xopt allows these dump files to be used to restart a run
after every step. Finally, this text interface allows users or
software programs access to running Xopt with little to no
coding required.

Figure 2: Example evaluate function for setting accelerator
parameters and making measurements using an EPICS in-
terface.

EXAMPLE: CHARACTERIZING BEAM
EMITTANCE AT THE ARGONNE

WAKEFIELD ACCELERATOR
The Argonne Wakefield Accelerator [16] operates an elec-

tron photoinjector that contains several elements which can
effect the transverse beam emittance, including a set of
solenoids and focusing quadrupoles. In order to characterize
the effect of these parameters on the emittance, AWA uses
a single-shot, multi-slit emittance diagnostic [17]. While
this diagnostic provides detailed information about the trans-
verse phase space it has a limited dynamic range. Beamlets
on the downstream measurement screen must not overlap
or extend beyond the confines of the screen boundary. As
a result, the multi-slit diagnostic can only provide accurate
emittance measurements for beams with a narrow range of
transverse sizes and divergences. Properly characterizing
beam emittances in this case requires the use of additional
quadrupole focusing elements to satisfy these measurement
constraints.

We used Xopt to run a constrained characterization al-
gorithm named Bayesian Exploration [7] to autonomously
characterize beam emittances as a function of photoinjec-
tor solenoids. A simple Python function was used to al-
low Xopt to control current settings of two solenoids and
two quadrupoles in the AWA beamline using pyEPICS [18].
This was combined with a custom interface with AWA’s
camera systems to do measurements of the beam distribu-
tion (number of beamlets, beamlet size, beamlet centroid,
etc.) in order to calculate the beam emittance. We specified
minimum and maximum magnet currents and measurement
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constraints (minimum number of beamlets, maximum beam-
let size, no beamlet overlaps) using the VOCS object. We
then used the “off-the-shelf” Bayesian Exploration generator
class to define characterization parameters (maximum travel
distance in input space, number of emittance measurements
to take for each set of input parameters, etc.). Finally, we
ran a set number of characterization steps by calling the
step() method in a simple for loop. This process explored
the input parameter space autonomously (as shown in Fig. 3),
avoiding parameter sub-spaces that led to invalid emittance
measurements while prioritizing scanning over variables
that have the most effect on beam emittance. Configuring,
executing and analyzing results from the characterization
run took place in a single Jupyter notebook using a web
browser interface. The same algorithm has been used repeat-
edly at other facilities (FACET-II) with different interfaces to
characterize beam dynamics in experiment and simulation.

Figure 3: Evaluation trace in input space during Bayesian Ex-
ploration characterization of emittance as a function of pho-
toinjector solenoids (K0, K1) and drive linac quadrupoles
(DQ4, DQ5). Valid and invalid measurements are due to
limited multi-slit emittance diagnostic dynamic range. Re-
produced from Ref. [7].

EXAMPLE: MULTI-OBJECTIVE GENETIC
OPTIMIZATION OF THE CORNELL

PHOTOINJECTOR
This Cornell injector, originally designed for generation

of 100 pC-scale bunches for high repetition rate light source
applications [19], presents a unique test bed for finding the ul-
timate bunch length and emittance limits in an MeV ultrafast
electron diffraction apparatus [20]. Our goal was to explore
both the stroboscopic limit (single electron per bunch) and
the single shot limit (∼ 105 electrons per bunch), and in both
cases to find machine settings that simultaneously minimize
three things: the width of the beam (allowing for smaller
samples), the bunch length and shot-to-shot jitter (for best
temporal resolution), and emittance (for best momentum
resolution).

As this is a multiobjective optimization problem, we
used the NSGA-II algorithm within Xopt, which was easily
combined with the simulation code GPT (General Particle

Figure 4: Dependence of achievable bunch length on final
beam size in the absence of space charge forces for three
different initial laser sizes: 2, 10, and 25 µm (dots), compared
to a simple model (lines). Reproduced from Ref. [20].

Tracer) [21], in order to optimize this system. All code was
written in Python, and the interface between GPT and Python
is publicly available [22]. The code was run on a comput-
ing cluster at Cornell University, with each evaluation of
GPT occupying a single core, and each member of a popula-
tion within the genetic algorithm run simultaneously, which
scales well with available computing resources. Pareto fronts
found by Xopt are shown in Fig. 4 and are further discussed
in Ref. [20]. For previous research projects, we have used a
C-based implementation of NSGA-II. However, using and
debugging multi-objective optimization in Xopt is much
easier than in previous implementations. As a result, Xopt
has completely supplanted the C-based NSGA-II code at
Cornell. Furthermore, Xopt allows for future experimenta-
tion with advanced multi-objective optimization algorithms
which use machine learning techniques.

CONCLUSION
Here we have described Xopt, a unified framework for

implementing and connecting algorithms to arbitrary opti-
mization problems. This framework has already been used
at a wide number of accelerator facilities and institutions in-
cluding LCLS, LCLS-II, FACET-II, Cornell, LBNL, AWA,
DESY, and ESRF. We welcome and encourage community
contributions of algorithms to this open-source library in
order to facilitate easy community access to state-of-the-art
optimization algorithms for accelerator control and design.
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