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Abstract
In recent work, it has been shown that reinforcement learn-

ing (RL) is capable of outperforming existing methods on
accelerator tuning tasks. However, RL algorithms are diffi-
cult and time-consuming to train, and currently need to be
retrained for every single task. This makes fast deployment
in operation difficult and hinders collaborative efforts in this
research area. At the same time, modern accelerators often
reuse certain structures, such as transport lines consisting
of several magnets, within or across facilities, leading to
similar tuning tasks. In this contribution, we use different
methods, such as domain randomization, to allow an agent
trained in simulation to easily be deployed to a group of
similar tasks. Preliminary results show that this training
method is transferable and allows the RL agent to control the
beam trajectory at similar lattice sections of two different
real linear accelerators. We expect that future work in this
direction will enable faster deployment of learning-based
tuning routines, and lead towards the ultimate goal of au-
tonomous operation of accelerator systems and transfer of
RL methods to most accelerators.

INTRODUCTION
Recently, reinforcement learning (RL) has been success-

fully applied at particle accelerators for various tasks [1–6]
and could perform faster and better than human operators or
numerical optimizers. In each step of the RL problem, the
agent receives some observation of the environment, takes
an action, and receives a reward based on its behavior. The
RL agent gathers experience during training and improves its
policy of choosing an action that maximizes the cumulative
reward. Training RL agents, however, is a time-consuming
process and demands a large number of samples. Further-
more, a trained RL agent is often specialized in the task and
environment that it is trained on, requiring retraining when
it is applied to other accelerators or even minor changes in
the hardware condition. This presents a challenge for ap-
plying RL to new tuning tasks and transferring existing RL
controllers to other facilities.

To mitigate this issue, we looked into different aspects of
RL including the task formulation and common interfaces,
aiming to produce transferable RL controllers for different
accelerator facilities [7]. Previous studies show that using
techniques like domain randomization [8, 9] for the magnet
misalignment and initial upstream beam condition allows
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the agent trained only in simulation to be applied directly
at the real accelerator [10]. In this contribution, we go one
step further and randomize the accelerator lattices during
the training phase. We show that the resulting RL agent
could perform the tuning task for multiple similar lattices.
Furthermore, we show that the agent’s performance can be
improved after fine-tuning a small number of steps on the
test lattice.

TRANSVERSE BEAM TUNING
We consider a standard transverse beam-tuning task at lin-

ear accelerators using three quadrupole magnets as a triplet,
and one pair of vertical and horizontal dipole corrector mag-
nets. The goal is to steer and focus the beam on a downstream
diagnostic screen by controlling the magnet settings. The
screen image is fitted with a Gaussian distributed beam using
four parameters 𝑏 = {𝜇𝑥, 𝜎𝑥, 𝜇𝑦, 𝜎𝑦}, namely the horizontal
and vertical beam position and size. In each step, the RL
agent receives a 13-dimensional observation, including the
parameters of the current 𝑏(current) and target beam 𝑏(target),
the strengths of the quadrupole magnets, and the bending an-
gles of the correctors 𝑢 = {𝑘Q1, 𝑘Q2, 𝑘Q3, 𝜃v, 𝜃h}. The agent
changes the accelerator setting by applying a delta action
𝑎 = Δ𝑢 on the magnets, where the step size is limited to
10% of the whole range of 𝑢. We used the averaged L1-
norm, i.e. the mean absolute error (MAE), as a metric of the
difference between the current and target beam

𝑑(𝑏(current), 𝑏(target)) = 1
4

4
∑
𝑖=1

∣𝑏(current)
𝑖 − 𝑏(target)

𝑖 ∣ . (1)

The reward is defined as the negative MAE normalized with
respect to the largest observable beam difference 𝑑max lim-
ited by the screen size

𝑟 = −𝑑/𝑑max . (2)

In this way, the agent receives a higher reward for improving
the beam parameters and is penalized for each step when the
beam is far from the target beam.

For the RL training, we use a simulated lattice shown at the
top (Training) in Fig. 1. Two sections of the real accelerator
lattices are used for evaluation, namely the diagnostic section
of FLUTE at KIT [11] and the experimental area of ARES at
DESY [12]. As training model-free RL algorithms requires
up to millions of samples, it is extremely slow or impossible
to use existing codes like OCELOT [13] or ASTRA [14],
where each simulation takes seconds or minutes to run. To
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Figure 1: Lattice sections with quadrupoles (Quad) and
correctors (Corr) studied for the transverse tuning task, in-
cluding a dummy training lattice, the diagnostic section of
FLUTE, and the experimental area at ARES.

facilitate fast training, we used the tensorized simulation
code Cheetah [15] with transfer-matrices-based tracking,
which trades off the simulation granularity for computational
speed. We trained the RL agents using the benchmarked
implementation of the soft actor-critic (SAC) algorithm in
the Stable-Baselines3 [16] package. Experiment tracking
and Bayes hyperparameter tuning are performed with the
Weights and Biases [17] package. The hyperparameters used
in training are listed in Table 1.

Table 1: Hyperparameters for the RL Training with SAC

Hyperparameter Value

Discount factor 𝛾 0.99
Learning rate 𝛼 0.0003
Replay buffer size 10 000
Batch size 100
Gradient steps 1
Timesteps 500 000
Max episode length 50

One example of a beam tuning episode using the trained
RL agent in the training lattice is shown in Fig. 2. The task
is to produce a focused beam centered at the screen with
random initial magnet strengths in a focusing-defocusing-
focusing setting. The RL agent changed the magnet settings
smoothly and successfully converged to the target beam
within only 10 steps, which is significantly faster than man-
ual tuning or numerical optimizers [10]. Additionally, it
is interesting to see that the RL agent turns off the first
quadrupole 𝑄1 and only uses the other two as a doublet
for the beam focusing.

To further investigate the learned RL policy, we calculated
the correlation between the actions taken by one RL agent
and the observations with an off-center incoming beam and
10 000 random magnet settings. Without loss of generality,
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Figure 2: Example of one RL transverse tuning episode. The
evolution of the beam parameters is shown in the middle,
and the magnet settings are color-coded to their normalized
values.
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Figure 3: Correlation analysis of the RL predicted actions
with respect to the observations.

we consider again the task to produce a perfectly focused
and centered beam. For example, it can be seen in Fig. 3
that the agent successfully learns to use the corrector mag-
nets {Δ𝜃v, Δ𝜃h} to transversely deflect the beam as expected.
Furthermore, the correlation between the corrector strength,
beam positions, and changes in quadrupole strength indi-
cates that the agent learned to use quadrupoles not only for
focusing but also for compensating for the beam positions.

To increase the robustness and make the trained RL agent
transferable for other accelerators, we included the domain
randomization (DR) [8, 9] technique in the training phase.
Instead of letting the agent repeatedly interact with the same
lattice geometry, in each training episode, we randomly sam-
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ple the distances between the five magnets and the screen
to create a new training lattice. This approach exposes the
agent to a wide range of system dynamics, forcing it to learn
a more robust policy.

We evaluated the performance of the trained RL agents
and show the results in Table 2, where vanilla-SAC denotes
the agent trained on the training lattice mentioned before
and SAC-DR denotes the agent trained with domain random-
ization technique. It needs to be mentioned that the agents
trained with other algorithms like proximal policy optimiza-
tion (PPO) achieved a similar performance, but they require
many more interaction steps with the environment, taking
about 5 million steps to train. As we also foresee training
on real accelerators in the future, the more sample-efficient
SAC algorithm is preferred. For each lattice configuration,
the RL agents are started with 100 different initial magnet
settings and allowed to tune the beam up to 50 steps. The
metric is chosen to be the mean value of the best obtained
beam MAEs, as defined in Eq. (1), over the 100 trials, which
mostly corresponds to the final beam parameter in the case
of RL agents. We can see that all the trained RL agents
outperform the random actions by an order of magnitude.
Although the vanilla-SAC agent successfully performs the
task on the lattice it has been trained on, its performance
drops significantly on the FLUTE lattice. On the other hand,
the agent trained with DR performs clearly better on the
FLUTE setting and reached similar results for both cases.
Nevertheless, the performance is slightly worse than the
specialized agent trained with the same number of steps.
One possible reason is that the task becomes naturally more
complicated when the magnet positions are changing and
it is difficult to train a policy that performs well on all the
possible lattices.

In addition to the Cheetah simulation, we also tested a
more realistic FLUTE model including the space charge ef-
fect using the OCELOT simulation. As expected, the agent
trained on a simple simulation model could capture the sys-
tem dynamics and directly be applied to a higher-fidelity
simulation model without any degradation in performance.
In fact, a previous study showed that the RL agent trained
in simulation can also be applied to the real machine with-
out retraining [10]. We also applied the trained agent to
the experimental area at the ARES linac and the results are
shown in the 4th column in Table 2. One particular feature
of the ARES lattice is that the vertical corrector is posi-
tioned between the two quadrupoles {𝑄2, 𝑄3}, which places
it out-of-distribution (OOD) with respect to the DR training.
Nevertheless, the DR agent is still able to tune the beam
and reach the same performance as other lattice configura-
tions. This clearly indicates that the agent is generalizing to
unknown scenarios.

Lastly, we investigated the possibility of further improving
the DR agents by fine-tuning (FT) on the test lattice, shown
in the 4th row in Table 2. In this case, the agent is retrained
for another 10 000 steps, corresponding to only 2 % of the
original number of samples, on the lattice it is tested on
respectively. The fine-tuned agent clearly improved for all

Table 2: Performance of the trained RL agents on the simu-
lated training (Tr), FLUTE (FL), and ARES (AR) lattices.
The lattices are tested using either the transfer-matrices-
based simulation Cheetah (Ch) or OCELOT (Oc) including
the space-charge effect. The beam MAEs are averaged over
100 tasks with random initial magnet settings.

Algorithm Averaged best beam MAE [µm]
Tr-Ch FL-Ch FL-Oc AR-Ch

Random 958 621 548 930
Vanilla-SAC 43 154 150 92

SAC-DR 86 63 60 67
SAC-DR+FT 52 31 31 36

the lattices and reached a comparable or better performance
as the original agent trained only on one lattice. This in-
dicates that the DR agents can be used as a starting point
and retrained on the real accelerators within a reasonable
amount of time, allowing a successful agent to be deployed
at different facilities.

CONCLUSION
We trained RL agents to perform the transverse beam tun-

ing task at linear accelerators using quadrupole and corrector
magnets. Our simulation results show that the RL agents
trained in low-fidelity simulations can be successfully ap-
plied to simulations including more complex dynamics like
collective effects. In addition, aided by techniques such as
domain randomization, RL agents trained for specific tuning
tasks can be transferred between different particle accelera-
tors with similar characteristics. It can even be generalized
for out-of-distribution lattices to some extent, which makes
it applicable to new lattice configurations, which were not
considered in the training phase. The DR agent can be fine-
tuned further on the real accelerator with a small number of
steps. This approach could achieve comparable performance
to that of training the RL agent completely on a specific lat-
tice, which significantly reduces the required beam time. It
is expected that the adaptation steps on the accelerators can
be further reduced using, for example, meta-reinforcement
learning and model-based approaches.
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