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Abstract
Longitudinal beam diagnostics are a useful aid during

tuning of particle accelerators, but acquiring them usually
requires destructive and time intensive measurements. In
order to provide such diagnostics non-destructively, com-
putational methods allow for the development of virtual
diagnostics. Existing Fourier-based reconstruction methods
for longitudinal current reconstruction, tend to be slow and
struggle to reliably reconstruct phase information. We pro-
pose using an artificial neural network trained on data from
a start-to-end beam dynamics simulation to combine scalar
and spectral information in order to infer the longitudinal
phase space of the electron beam. We demonstrate that our
method can reconstruct longitudinal beam diagnostics ac-
curately and provide the reconstructed data with adaptive
resolution. Deployed to control rooms today, our method can
help human operators reduce tuning times, improve repeat-
ability and achieve pioneering working points. In the future,
ML-based virtual diagnostics will help the deployment of
feedbacks and autonomous tuning methods, working toward
the ultimate goal of autonomous particle accelerators.

INTRODUCTION
Knowledge and control of the shot-to-shot longitudinal

phase space (LPS) of an electron beam is critical to achieve
the performance requirements of modern particle accelerat-
ors. However, conventional methods of measuring the LPS,
such as using a transverse deflecting cavity (TDS), are de-
structive measurements, meaning that the LPS cannot be
measured during beam delivery to experiments. Further-
more, these measurements can take a long time to set up,
often requiring extensive calibration before accurate data
can be taken. All of this means, that the LPS is either not
taken advantage of during accelerator operation, leading to
inferior beam quality, or that a lot of time is spent measuring
the LPS during accelerator setup and tuning, significantly
reducing the time available for useful beam operations.

Methods have been developed to reconstruct the LPS from
other non-invasive measurements. At European XFEL, a
Fourier-based method [1] is deployed. This method uses
spectral information from the THz spectrometer CRISP to
reconstruct the current profile of each bunch. While this
method works and has shown to have good accuracy in oper-
ation, it lacks phase information, meaning that it must take
intelligent guesses regarding the phase. This can lead to
various faults in the reconstructed current profile such as a
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flip in the longitudinal dimension. Furthermore, this method
is expensive to compute. With up to 2700 bunches per train
and 10 Hz operation, this makes real-time bunch-by-bunch
reconstruction of the entire bunch train infeasible. Unlike
other methods mentioned in the following, this method can
also not reconstruct the full 2-dimensional LPS image, but
only the 1-dimensional current profile.

Artificial neural networks (ANNs) are general purpose
function approximators that have, in recent years, been
shown to be capable of achieving incredible results in nu-
merous domains [2–5]. As a result, the particle accelerator
community has also started to adopt ANNs in a number of
different capacities, ranging from surrogate modelling [6]
to autonomous control and optimisation [7] of accelerators.
Among these use cases for ANNs in the particle acceler-
ator domain are virtual diagnostics, where learned surrogate
models provide information about the state of an acceler-
ator that would otherwise be difficult or even impossible to
acquire using a physical diagnostic. The provided informa-
tion can give useful data about experiments, help operators
tune the accelerator as well as jump-start the development
of intelligent controllers for autonomous tuning [7, 8].

In previous work, ANNs have been used to learn both so-
called scalar [9–11] and spectral[12, 13] virtual diagnostics
for 1-dimensional and 2-dimensional LPS reconstruction,
using scalar inputs, such as radio frequency (RF) settings,
or spectral inputs, such as THz radiation spectra, to infer
the LPS. Both neural scalar and spectral virtual diagnostics
improve on the Fourier-based method in that they are more
efficient to compute, especially on the right hardware, than
the Fourier-based method. Furthermore, they allow for the
reconstruction of the full 2-dimensional phase space image
instead of just the 1-dimensional current profile. Neural
scalar and spectral virtual diagnostics, however, each have
disadvantages. Spectral virtual diagnostics, just like the
Fourier-based reconstruction, does not have access to phase
information. Instead, being a machine learning method,
the ANN must learn statistics over the training dataset to
make more educated guesses on the phase information. As a
result, neural network-based spectral virtual diagnostics are
likely to fail in cases, where the phase is one that occurs less
often. Scalar virtual diagnostics, on the other hand, function
more like a surrogate model and therefore have access to
phase information. They are however susceptible to false
RF setting readbacks [9, 10, 12], such that small calibration
errors can lead to very wrong LPS reconstructions.

In this work, we present an ANN-based combined scalar-
spectral virtual diagnostic, addressing the shortcomings
of either scalar and spectral virtual diagnostics, for recon-
structing both the 1-dimensional current profile and the 2-
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dimensional LPS at the European XFEL at DESY in Ham-
burg, Germany, from RF settings and the THz spectrum. Fur-
thermore, we introduce an additional feature to our method,
that allows it to achieve high adaptive resolution for bunches
covering both large and small areas of the LPS.

COMBINED SCALAR- AND SPECTRAL
VIRTUAL DIAGNOSTICS

At the European XFEL, we can combine scalar and spec-
tral data for creating a virtual longitudinal phase space dia-
gnostic. RF settings influence the beam’s current profile and
can therefore provide information about the latter. The RF
readbacks are, however, not always perfectly reliable and
a purely scalar diagnostic is therefore not be very robust.
At the same time, the THz spectrum measured by the THz
spectrometer CRISP installed at European XFEL delivers
information about the frequencies present in in the beam’s
current profile, but it is missing phase information. Any re-
construction using purely spectral diagnostics will therefore
struggle to accurately infer the current’s phase.

We propose using a neural network machine learning
model that is trained on data from a start-to-end beam dy-
namics simulation to combine scalar and spectral inform-
ation in order to infer either the current profile or the 2-
dimensional LPS. To this end, we construct an ANN that
receives two inputs: A 5-dimensional vector of RF settings
(𝛼, 𝜌, 𝜓, 𝛼L1, 𝛼L2) and a 240-dimensional THz formfactor
sampled from 0.7 THz to 58 THz. These are then concat-
enated and passed through a multilayer perceptron (MLP),
outputting either 300 ordered samples of the current along
the longitudinal dimensions, or a 300 by 300 image of the
LPS. The ANN is trained in a supervised setup to minimise
the difference between the reconstructed current profile or
LPS from the ground truth current profile or LPS generated
using an end-to-end simulation.

ACHIEVING HIGH RESOLUTION AT ANY
SCALE

When predicting the current profile or the LPS, one has to
choose the sample positions on each dimension for which the
model is expected to predict the current or LPS magnitude.
There is, however, a trade-off when choosing the samples to
use. Bunches may be very long or very short. In order to
cover a large bunch, the samples must be spread out over that
wide range. In order to cover short bunches with adequate
resolution, one must then have a large number of samples.
Not only does this needlessly increase the complexity of the
ANN model, it also means that a lot of the time, most of the
ANN outputs are not predicting any useful information. This
can lead to the model learning to output 0.0 on these simply
because this is correct most of the time, instead of even
attempting to learn the correct function for that particular
sample.

We solve this problem by adding a second output to the
final layer of the ANN that is either the length of the bunch
along the longitudinal dimension when only reconstructing

Figure 1: Flowchart of the ANN architecture used for recon-
structing the LPS image. The RF settings and THz are input
to the ANN on the left. The information then flows through
multiple hidden layers, before the LPS image and its extents
in both dimensions are output on the right.

the current profile, or the 2-dimensional range of the bunch
in both dimensions of the LPS. The 300 samples are then
equidistantly arranged over this range output by the same
model. This way, the resolution of our model output adapts
automatically to the length of the bunch, always resolving
all relevant features, while ensuring that the entire bunch is
captured. To our knowledge none of the previous works has
done this, instead relying on fixed samples.

The resulting ANN model has the same inputs and outputs
as described in the previous section, but adds either a single
scalar value denoting the longitudinal length of the bunch
or a tuple (𝑠, 𝛿𝐸) denoting the full 2-dimensional range of
the LPS to the output. The model ℳ is given as

̂𝑦LPS, ̂𝑦range = ℳ (𝑥RF, 𝑥THz)

In between the input and the output layer, there are from
2 to 6 hidden layers, as is illustrated in fig. 1. Each hidden
layer may be followed by batch normalisation before the
activation. The outputs use a different activation from hidden
layers. Namely, a Softplus activation is chosen as the output
activation function. The latter ensures that all outputs are
strictly positive, as they physically should be, while also
ensuring that there remains some gradient when the output
should be zero according to the ground truth. If a rectified
linear unit (ReLU) activation function were used on this
output, gradients may be lost when 0 is output, which results
in fully trained models that have single 0 samples where they
stopped learning. We use an mean squared error (MSE) loss
function over each output where both outputs are weighted
the same as in

𝐿 (𝑦, ̂𝑦) = MSE (𝑦range, ̂𝑦range) + MSE (𝑦LPS, ̂𝑦LPS)

with

MSE (𝑦, ̂𝑦) = 1
𝑛

𝑛
∑
𝑖=0

(𝑦𝑖 − ̂𝑦𝑖)
2

For training, an Adam [14] optimiser is used with 𝛽1 =
0.9 and 𝛽2 = 0.999. Hyperparameters such as the number
and width of hidden layers, or the learning rate were tuned
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Figure 2: Comparison of ground truth and reconstructed 2-dimensional LPS images and 1-dimensional current profiles.
Each column shows the samples belonging together. The 1-dimensional current profiles were not derived from the LPS
images, but instead reconstructed by a purpose-built ANN.

Table 1: Hyperparameters Used During Training of the Re-
construction Models

Parameter Current profile LPS

# Hidden layers 3 4
Hidden layer width 267 681
Hidden activation ReLU ReLU
Batch normalisation Yes Yes
# Training epochs 76 95
Learning rate 0.003 0.0008
Batch size 66 70

using Bayesian optimisation to minimise the loss over the
validation dataset. The final used hyperparameters for both
1-dimensional current reconstruction and 2-dimensional
LPS reconstruction are listed in table 1. The training data-
set used contained 32 000 samples and was randomly split
into training, validation and test sets according to the ra-
tios (80 %, 10 %, 10 %). The RF settings and formfactors
are normalised over the training dataset follow a standard
normal distribution. Current profiles, bunch lengths, LPS
images and LPS image extents are normalised to a range of
(0, 1).

As can be seen in fig. 2, the output of our model matches
the ground truth very well. Furthermore, unlike previous
methods, our method produces no discernible artefacts.

CONCLUSION
In this work, we presented a machine learning method

using neural networks, that is capable of reconstructing both

current profiles and 2-dimensional LPS images with great ac-
curacy using readily available scalar and spectral diagnostics
at European XFEL. Furthermore, our method is able recon-
struct current profiles and LPS images at the resolution best
suited to their extent.

The reconstruction provided by our method can be
provided, for example in the form of a GUI application,
to human operators in order to assist them with accelerator
setup and tuning. In addition, our method may also be used
as an input to advanced autonomous tuning methods, redu-
cing the engineering effort required to make such methods
operational.

Future work on virtual diagnostics for LPS reconstruction
may focus on improving reliability of the ANN model as
well as the clarity of details in the reconstructed signals. This
may, for example, be achieved using convolutional neural
networks (CNNs), generative adversarial networks (GANs)
or better suited loss functions. Moreover, the developed
methods may also be deployed to other virtual diagnostics
reconstructing different signals that may help operate future
particle accelerators and push the limits of their operability.
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