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Abstract
The Alternating Gradient Synchrotron (AGS) is a particle

accelerator at Brookhaven National Laboratory (BNL) that
accelerates protons and heavy ions using the strong focus-
ing principle. In this work, we perform simulation studies
on the AGS ring of a machine error detection method by
comparing simulated and measured orbit response matrices
(ORMs). We also present preliminary results of building
two neural network (NN) surrogate models of the AGS sys-
tem. The first NN model is a surrogate model for the ORM,
which describes mapping between orbit distortions and cor-
rector settings. Building a self-adaptive model of ORM
eliminates the need to re-measure ORM using the traditional
time-consuming procedure. The second NN model is an er-
ror identification model, which maps the correlation between
measurement errors (differences between measurement and
model) and sources of such errors. The most relevant error
sources for the error model are determined by performing
sensitivity studies of the ORM.

INTRODUCTION
The Alternating Gradient Synchrotron (AGS) is a strong

focusing synchrotron ring that currently serves as the injector
for Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratory (BNL). It will continue to serve as the
injector for the future Electron Ion Collider (EIC). The AGS
accelerates polarized protons and heavy ions up to a typi-
cal maximum rigidity of 81 T-m (e.g., 23 GeV protons and
10 GeV/N Au beams) [1]. Orbit correction and brightness
control at the AGS are important to the EIC project because
electron cooling for the EIC requires small incoming emit-
tances from the AGS. The current AGS is mostly hand tuned
by operators, without systematic tuning routine. EIC also
requires an extra cooler at AGS extraction energy, so better
beam control in the AGS will benefit EIC cooler operation.

In this work, we present machine learning (ML) based
orbit correction method by studying the orbit response matrix
(ORM). The traditional orbit correction method used by most
accelerator facilities calculates the inverse of a pre-measured
ORM matrix 𝑅−1 using singular value decomposition (SVD),
and solves the matrix equation to get required corrector
settings [2]. The AGS ring is comprised of 12 super-periods,
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each containing 4 dual plane orbit correctors and 6 dual plane
beam position monitors (BPMs). By establishing surrogate
models for both the ORM itself and its change due to machine
errors, we can achieve accurate real-time orbit tuning at the
AGS.

ORBIT RESPONSE MATRIX
The orbit response matrix (ORM) of an accelerator maps

the relationship between orbit measurements (®𝑥, ®𝑦) and cor-
rector settings ( ®𝜃𝑥 , ®𝜃𝑦) via [3]:(

Δ®𝑥
Δ®𝑦

)
= 𝑅

(
Δ ®𝜃𝑥
Δ ®𝜃𝑦

)
(1)

The measured 𝑅𝑚𝑒𝑎𝑠 can be obtained by changing each
corrector successively and observe the change in orbit mea-
surements. If the 𝑅 is an accurate representation of the
machine, then we can easily correct any orbit offsets Δ®𝑦
with corrector settings Δ®𝜃 = 𝑅−1Δ®𝑦.

Simulated data inquiry using Bmad and PyTao
The AGS ring has a total of 72 BPMs and 48 correctors,

so 𝑅 has a dimension of (72, 48). The optical model of
AGS is traditionally built with MAD-X [4], but simulating
a full ORM will require running multiple times of MAD-
X simulation and then dealing with all the output files. In
order to streamline this process, we built the AGS optical
model using Bmad [5]. Bmad has a Python interface PyTao
for its simulation program Tao, which allows accelerator
simulations to run in a Python environment. Therefore, we
developed a Python routine using for loops to automatically
run simulations with different corrector settings, combine
all the output orbits easily to an array, and calculate each
element of 𝑅 using 𝑅𝑖 𝑗 =

Δ𝑦𝑖
Δ𝜃 𝑗

.

Machine error detection with SVD
An actual machine with errors (i.e. quadrupole gradient

errors, corrector calibration errors, etc.) will produce a
different 𝑅𝑚𝑒𝑎𝑠 than that of a model/reference machine with
no error 𝑅𝑚𝑜𝑑:

Δ𝑅𝑖 𝑗 = 𝑅𝑚𝑒𝑎𝑠
𝑖 𝑗 − 𝑅𝑚𝑜𝑑

𝑖 𝑗 (2)

The amount of the difference Δ𝑅 is determined by the
machine errors ®𝜈. Therefore, we can introduce another map-
ping matrix 𝐽, which relates the change of orbit response
matrix with machine error via:
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Since 𝐽 is not a square matrix, the solution to Eq. 3 can
be found using singular value decomposition (SVD):

𝐽 = 𝑈 𝑆𝑉𝑇 (4)

where 𝑈 is an 𝑛𝑚 × 𝑛𝑚 orthogonal matrix, 𝑉 is an 𝑁 × 𝑁

orthogonal square matrix, such that 𝑈𝑈𝑇 = 𝑉𝑉𝑇 = 1. 𝑆 is
an 𝑛𝑚 × 𝑁 diagonal matrix whose elements are the singular
values of 𝐽.

The pseudo-inverse of 𝐽 is then given by:

𝐽+ = 𝑉 𝑆+𝑈𝑇 (5)

Therefore, if we can establish a 𝐽 by testing how Δ𝑅

changes with some commonly known machine errors, any
future error of the same sources can be reconstructed simply
by measuring Δ𝑅 and solving Eq. 6:
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(6)

We tested this error detection method on quadrupole er-
rors in the AGS. There are 24 quadrupoles (12 horizontal,
12 vertical) in the AGS. All quadrupoles are wired in series
in one plane, but in Bmad we can add kick error Δ𝜈𝑘 to
individual quadrupole and observe how 𝑅𝑚𝑒𝑎𝑠 differs from
𝑅𝑚𝑜𝑑 , therefore calculating 𝐽 by 𝐽𝑖 𝑗𝑘 =

Δ𝑅𝑖 𝑗

Δ𝜈𝑘
.

Figure 1 shows the values of 𝐽 calculated for the horizontal
quadrupoles. As mentioned before for the AGS 𝑅 has a
dimension of (72,48), so the flattened Δ𝑅 has a dimension of
(72 × 48, 1) = (3456, 1), and 𝐽 in this case has a dimension
of (3456,12). A Δ𝜈 of 4 Amp in power supply current, which
corresponds to ± 1% in k1 value, is added to each horizontal
quadrupole to calculate 𝐽.

Once we obtained 𝐽, we are able to reconstruct any hori-
zontal quadrupole setting by getting an ORM measurement
and plugging the values into Eq. 6. Figure 2 presents an
example of successful reconstruction of a randomly chosen
current combination for all 12 quadrupoles.

Neural Network for real-time ORM
Despite the importance of ORM to orbit correction, in

reality measured 𝑅 is not updated often at most accelera-
tors. It takes a time-consuming measuring process that takes
at least 30 minutes and interrupts normal operations. Pre-
measured 𝑅𝑚𝑒𝑎𝑠 will inevitably get less accurate with time
due to changes in the machine elements. This usually results
in an orbit shift or brightness drop even when the traditional
orbit correction method is still running.

Figure 1: Simulated 𝐽 matrix for horizontal quadrupoles.

Figure 2: Horizontal quadrupole power supply current set-
tings reconstructed from ORM measurement.

One way to solve this problem is by building a surrogate
model for the real-time 𝑅𝑚𝑒𝑎𝑠 and retrain the model con-
stantly with new orbit data. Most accelerator facilities has
feedback systems set up so that the orbit data and the correc-
tor settings are automatically saved after a predetermined
time interval during daily operation. Such abundance of
data is very fitting for machine learning applications. An
example study is done at BEPCII as detailed in [6].

Here we present the training results of two neural net-
work (NN) models: one for 𝑅 (Fig. 3) and the other for 𝑅−1

(Fig. 4). Both are fully connected feed-forward neural net-
works (FFNN) with three layers and Hyperbolic Tangent
activation function [7]. They are trained on 800 pairs of
simulated orbit data, and both models managed to reach
accuracy above 99% on 200 pairs of testing data.

Figure 3: Vertical orbit predictions produced by a 𝑅 model.

The benefit of building a NN model for 𝑅 and 𝑅−1 is
multi-faceted. First, the model can be retrained in seconds
with new data to adapt to a new machine configuration, thus
eliminating the need to spend more than 30 minutes to re-
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Figure 4: Corrector setting predictions produced by a 𝑅−1

model.

measure 𝑅. Second, SVD calculation is not needed for orbit
correction since the NN can model 𝑅−1 directly. Finally,
the 𝑅 model can be used to calculate Δ𝑅 in real-time for
machine error detection method described in the previous
section.

SENSITIVITY STUDIES OF ORBIT
RESPONSE MATRIX

The end goal of the studies is to develop an error-detection
model using neural networks that can identify the kind and
amplitude of machine error given a measured ORM 𝑅𝑚𝑒𝑎𝑠 .
In order to build such a model, we have to determine which
error sources are important to change in 𝑅𝑚𝑒𝑎𝑠 , so that they
can be included as outputs of the error-detection model.

Table 1 lists the parameters considered in this study, and
the value ranges within which they were changed. In this
work, sensitivity is quantified with two criteria. One is the
effect a control parameter has on the root mean square (RMS)
of 𝑅𝑚𝑒𝑎𝑠 as percentage change, the other is the effect on beta-
beating, which is defined as:

Δ𝛽

𝛽
=

𝛽𝑚𝑒𝑎𝑠 − 𝛽𝑚𝑜𝑑𝑒𝑙

𝛽𝑚𝑜𝑑𝑒𝑙

(7)

Table 1: AGS Error Sources Scan Range

Name Unit Range
Main magnet roll error mrad [-0.5, 0.5]
Main magnet gradient error m−2 ± 0.1%
Quadrupole gradient error m−2 ± 0.2%
Sextupole offset error mm [-8, 8]

The AGS has 240 main magnets, with 20 magnets in each
super-period. They are combined function magnets which
are defined in simulation as Rbend dipoles with non-zero
quadrupole (k1) and sextupole (k2) kicks. According to past
survey data, there is a strong systematic super-periodicity in
the main magnet roll errors. In each super-period, magnets
01 - 10 tend to have positive roll errors, while magnets 11
to 20 tend to have negative roll errors.

Table 2 shows the sensitivity results to main magnet roll
errors by scanning roll errors of [0, 0.5] mrad for magnets
01 - 10 and [-0.5, 0] mrad for magnets 11 - 20. The machine
is much more sensitive to magnets 11 - 20, which means the

direction of roll plays an important role. We also observe
that roll errors in super-periods A, C, E, G, I, K cause more
changes than other super-periods. RMS value changes are
0.25% greater and beta-beatings are 0.2% greater.

Table 2: ORM Sensitivity to Main Magnet Roll Error

Magnet 𝚫𝑹𝒓𝒎𝒔 (%) 𝚫𝜷𝒙 (%) 𝚫𝜷𝒚 (%)
01 - 10 [-0.13, 0] [-2.5, 4.5] [-4.5, 4.7]
11 - 20 [-0.1, 0.52] [-5.7, 5.6] [-8.5, 9.3]

For the main magnet gradient errors, the main magnets are
divided into six families: AD, AF, BD, BF, CD, CF. Their
quadrupole and sextupole kick values are calculated with
different polynomials in simulation. Furthermore, magnets
in the A and C families have length of 94 inches, while
magnets in the B family have length of 79 inches. For each
20 magnets in one super-period, there are two AD, two AF,
four BD, four BF, four CD, and four CF magnets. Table 3
shows the sensitivity results to main magnet gradient errors.

Table 3: ORM Sensitivity to Main Magnet Gradient Error

Family 𝚫𝑹𝒓𝒎𝒔 (%) 𝚫𝜷𝒙 (%) 𝚫𝜷𝒚 (%)
AD [-1.6, 1.8] ± 0.08 ± 0.1
AF [-0.01, 0.11] ± 0.12 ± 0.09
BD [-2.34, 2.87] ± 0.06 ± 0.1
BF [-0.14, 0.46] ± 0.1 ± 0.06
CD [-2.11, 2.72] ± 0.23 ± 0.29
CF [-0.73, 1.18] ± 0.34 ± 0.23

Table 4 shows the sensitivity results to quadrupole gradi-
ent errors and sextupole offset errors. For future work, we
aim to survey more error sources such as roll errors for the
partial Siberian Snakes [1] and BPM errors.

Table 4: ORM Sensitivity to Quadrupoles & Sextupoles

Source 𝚫𝑹𝒓𝒎𝒔 (%) 𝚫𝜷𝒙 (%) 𝚫𝜷𝒚 (%)
QH k1 ± 0.0048 ± 0.0015 ± 0.007
QV k1 ± 0.00037 ± 0.0049 ± 0.0044
SXH x-off [-0.39, 0.6] [-1.04, 1.5] [-1.29, 1.55]
SXV x-off [-1.4, 2] [-0.9, 0.8] [-2.46, 3.04]
SXH y-off [0, 0.11] [-0.017, 0.005] [0, 0.07]
SXV y-off [0, 0.15] [-0.005, 0.025] [0, 0.14]

CONCLUSIONS
In this work, we tested an ORM-based machine error de-

tection method on the AGS, and built satisfactory NN models
for the AGS ORM and its inverse using AGS lattice built in
Bmad. We also conducted sensitivity studies on the AGS
ORM. This work demonstrate the possibility and benefit of
applying machine learning techniques to improve the effi-
ciency of orbit correction and error detection in accelerator
control systems.
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