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Abstract

The Ionization Profile Monitors (IPMs) are used to mea-
sure the transverse profiles of the beams accelerated at the
Brookhaven National Laboratory (BNL) Alternating Gradi-
ent Synchrotron (AGS). These devices use Multi-Channel
Plates (MCP) to collect electrons generated by ionization of
the residual gas to get an image of the beam projection onto
two transverse planes. The gain values of those channels are
crucial for the accurate measurements of beam parameters.
Various errors in the system can affect the channel gains -
initial fabrication variations, channel aging, etc. Moreover,
there are systematic errors associated with varying delays in
the digitization paths for different groups of channels. In this
work, we present a way of using Bayesian Optimization (BO)
to calibrate the channel gains. Simulation results show that
the BO approach can compensate for the errors quite well
and enable better learning of the group sampling function.

INTRODUCTION

Ionization Profile Monitors (IPMs) have been developed
at Brookhaven National Laboratory (BNL) to measure trans-
verse beam profiles in RHIC [1-3]. When the beam passes
through the beamline, it ionizes the background gas and
emits electrons. Those electrons are swept transversely from
the beamline and collected by the Multi-Channel Plates
(MCP) on 64 strip anodes oriented parallel to the beam
axis. An IPM collects and measures the distribution of those
electrons!. Ideally, the distributions should be independent
of where the beam signal locates in the IPM. In other words,
if the beam is moved across the channels, the IPM measure-
ments from different locations should have identical shapes.
One iteration of such channel scanning by moving beams
across different channels is called a position scan.

The gain value of each channel is the dominant factor
in determining what a final distribution looks like. There
are various errors existing in the system that can affect the
channel gains. Figure 1 illustrates the beam profiles from a
position scan without calibration. We can see that the beam
profile has a large variation when measured from different
locations. The channel gain errors may result from initial
channel-to-channel gain variations, depletion of channel
gains due to aging, etc. There are also systematic errors
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! An ideal beam profile should resemble a Gaussian shape.
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associated with varying delays in the digitization paths for
different groups of channels.
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Figure 1: Beam profiles from a position scan.

Currently, the channel gains are calibrated manually.
There are two ways to approach it. The first approach com-
pares the beam profiles across different channels. It then
tunes the channel gains so that the position scan produces
almost equal profile amplitudes. The second approach com-
pares the profiles on single channels. When the beam moves
across different channels, each channel will record an enve-
lope of the beam. The calibration is performed by setting
gains which lead to equal envelopes.

Usually, the corrections for channels derived from those
two methods agree well. The profiles after calibration are
shown in Fig. 2. As we can see, the gain errors are mostly
evened out and the beam profile measurements can be more
useful now.
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Figure 2: Beam profiles after calibration.

THPL: Thursday Poster Session: THPL
MC6.A27: Machine Learning and Digital Twin Modelling




14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-THPL012

4444

MC6.A27: Machine Learning and Digital Twin Modelling

THPL012

THPL: Thursday Poster Session: THPL

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


14th International Particle Accelerator Conference,Venice, Italy

ISBN: 978-3-95450-231-8

However, the disadvantage of manual tuning is that the
sample efficiency is very low, and it would not be practical to
scan every possible setting in the real machine to select the
best parameter. This work presents a way of using Bayesian
Optimization (BO) to address this issue. After training, BO
can efficiently find a solution that produces better calibration
results than the existing method.

Bayesian Optimization (BO) is a powerful tool for optimiz-
ing an objective function f with as few samples as possible [4,
5], and has been widely applied across various fields [6]. It
is especially useful when the explicit expression of fis un-
known, and the evaluation of fis expensive (e.g., any process
involving human labor). Two essential components of BO
are the surrogate model and acquisition function. In this
work, we use a Gaussian Process (GP) with a Monte-Carlo
(MC) based batch Expected Improvement (EI) acquisition
function[7-9].

SIMULATION RESULTS

We demonstrate the performance of the BO calibration
by using a simulator. The simulator takes into account gain
errors, group sampling function, and system white noise.
It takes the gain calibrations as the inputs and outputs the
corresponding signal strength for each channel.

Simulation Setups

The gain errors used in the simulation are attained from a
real machine scan in Apr. 2022, as shown in the top plots of
Fig. 3.
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Figure 3: Position scan with gain errors acquired from the
real system. It shows that the gain errors become the domi-
nant factor in shaping the beam profiles.

A position scan under those gain errors is shown at the
bottom of Fig. 3. The positions are selected across the 64
channels. The original beam distribution is plotted in black.
As we can see, the gain errors (in grey) are the dominant
factor in shaping the beam profiles, indicating the neces-
sity of error calibration to obtain more useful beam profile
measurements.
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Gain Error Calibration using Bayesian
Optimization

We apply BO on both cross-channel and single-channel
approaches. Due to the so-called curses of dimensional-
ity [10], for the cross-channel approach, we organize the
channels by groups and BO directly optimizes each group
instead of individual channels.

Gaussian fit is performed on the beam profile measure-
ments and the amplitude of the fit profile across all measured
locations is used as the merit to guide the BO process. The
goal is to make all the fitted amplitudes® close to 1. For
the cross-channel approach, we use a group size of 4, 100
starting samples, and BO runs for 100 rounds. For the single-
channel approach, 4 channels are optimized together with
100 starting samples and BO takes 100 samples. As a bench-
mark, a brute force method is also implemented where for
each channel group, scanning is performed and the gain
value that renders the highest objective is selected for that
group.

Comparison results for the fitted amplitudes and sigmas
are shown in Fig. 4. We can see that the calibration procedure
significantly improves the beam profile quality by reducing
their amplitude and sigma variations.
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Figure 4: Comparison results of fitted amplitude and sigma
from different schemes.

Table 1 summarizes the average and std values of the fitted
amplitude and sigma with the best values underlined. We can
see that both the cross-channel and single-channel methods
generate less variational profiles than the greedy method,
and are much better than the no calibration scenario. The
single-channel method regulates both amplitude and sigma
slightly better than the cross-channel method. The trade-off
is that it takes longer for the single-channel method to get
the optimal solution since at each time only one channel is
optimized.

Learn the Group Sampling Function

In addition to independent channel gains, the channels
can have gain errors correlated by the instrument electron-

2 Number 1 is used because it’s the real signal’s amplitude. It works for
any other constant. The purpose is to equalize those fitted amplitudes.

THPLO12
4445

e=ga Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.




14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-THPL012

MC6.A27: Machine Learning and Digital Twin Modelling

4445

THPL: Thursday Poster Session: THPL

THPL012

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


@2z Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

14th International Particle Accelerator Conference,Venice, Italy

ISSN: 2673-5490

ISBN: 978-3-95450-231-8

Table 1: Average and std values of the fitted amplitude and
sigma from different calibration schemes.

Method Average std

amplitude 1.09 0.63

No calibration

sigma 5.33 1.40
Greedy amplitude 1.00 0.10
sigma 5.11 0.55
Cross-channel  amplitude 1.00 0.06
sigma 4.99 0.54
Single-channel amplitude 1.06 0.04
sigma 5.00 0.28

ics. The electrons impinging on the MCP create a pulse
which is then sampled and digitized in groups of 8 sequen-
tially in time. Since each group of 8 samples at a different
time on the varying waveform, each group has an effective
gain determined by its sampling time and the structure of
the waveform. We call the time response function of the
channels the group sampling function % .

Hence, by controlling the starting time of the first group,
the multipliers for an entire beam profile are settled. A typi-
cal scan of the starting time on the group sampling function
F is shown in Fig. 5, where the starting time is increased
from —180 to 180 with a step size of 20. We can see that
under the same system condition, different starting times
can manipulate the beam profiles on a noticeable scale.
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Figure 5: Beam profiles with different starting times from the
group sampling function % . The shapes can be manipulated
by tuning the starting time.

To learn the group sampling function, we scan the starting
time using the same fashion above. For each starting time,
one signal in a group (usually the signal located at the center
of a group) is selected as the group representative. All the
maximum fitted amplitudes of the group representatives are
recorded, and those amplitudes can be seen as a section of
points from the function % . Then a sketch of the function
F can be plotted by connecting those sections.

Figure 6 shows the sketches of the function % before
and after calibration®. We can see that after calibration, the
learned function % has a better resolution.

3 Here, we use the single-channel calibration.
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Figure 6: Comparisons of the group sampling function
sketches before and after gain calibration. We can see that
calibration improves the resolution of the learned function
F.

Furthermore, when the gain errors are systematic, calibra-
tion is necessary to learn a sensible group sampling function,
as shown in Fig. 7.
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Figure 7: With systematic gain errors (top), calibration is
necessary to learn a sensible group sampling function.

CONCLUSION

In this work, we explore the possibility of using Bayesian
optimization to calibrate the channel gains in the AGS IPMs.
The simulation results show that BO can effectively cor-
rect the gain errors and facilitate the learning of the group
sampling function.
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