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Abstract
Physics models, particularly for online operations, such as

MAD-X or Bmad models, depend on a good understanding
of the magnet characteristics. Even thought detailed mag-
net measurements are used to verify that the magnets meet
specifications before being installed, some magnet charac-
teristics are often not fully understood during operations.
Beam-based measurements can then be used to determine
magnet properties. In this work, we present a new method
for determining magnet properties using orbit response ma-
trix (ORM) measurements. This new approach utilizes a
neural network (NN) surrogate model to establish the map-
ping between ORM measurements and quadrupole strengths.
The NN model is trained to identify quadrupole strength er-
rors by observing the difference between measured ORM
and model ORM. The evaluation of this NN during accel-
erator operation leads to a polynomial fit of the quadrupole
strengths as a function of power supply settings. We will
present results from preliminary beam studies in the AGS
Booster.

INTRODUCTION
The Alternating Gradient Synchrotron (AGS) Booster

is used to increase beam intensity in the AGS by pre-
accelerating particles before they enter the AGS. It accepts
heavy ions from EBIS or protons from the 200 MeV Linac.
The Booster also serves as heavy ion source for the NASA
Space Radiation Laboratory [1]. Accurate control of beam
properties such as orbit and tune is indispensable to provid-
ing high quality beam to both the AGS, which serves as the
injector for Relativistic Heavy Ion Collider (RHIC) and the
future Electron Ion Collider (EIC), and the NSRL beamline
for NASA.

In order to have better control of the beam, a good under-
standing of the magnet properties is necessary. One essential
property is called the transfer function, which describes how
the magnet field responds to change in power supply (PS)
current. Traditionally, transfer functions are determined dur-
ing magnet production measurements before installation, but
how accurate they remain after the magnets are installed is
unclear. In this work, we present a method which combines
orbit response matrix (ORM) and machine learning (ML)
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to determine magnet characteristics in the Booster. By es-
tablishing a surrogate model between change in ORM and
quadrupole kick values, we can use polynomial fitting to
obtain the relationship between quadrupole power supply
current values, which are set by operators, and the actual
kick values observed by the beam. The full algorithm is
summarized in Fig. 1.

Figure 1: Conceptual representation of the magnet charac-
teristic measurement method.

QUADRUPOLE TRANSFER FUNCTION
There are 48 quadrupoles (24 horizontal, 24 vertical) in

the Booster. The defocusing quadrupoles are slightly longer
than focusing quadrupoles because quadrupoles and main
bending dipoles are powered in series. Since dipoles have
an intrinsic focusing component, making the defocusing
quadrupoles slightly longer brought the vertical tune up
closer to the horizontal tune. Most quadrupoles have round
vacuum chamber, but two vertical quadrupoles (DQ5, FQ5)
have special “eared” chambers.

The optical model of Booster is traditionally built with
MAD-X [2]. The current quadrupole transfer functions used
in the model are defined to match the two sets of tune mea-
surement data taken in 1992 and 1993 [3].

The power supply current 𝐼𝑞 for a main quadrupole is a
combination of main dipole current 𝐼𝑑𝑖𝑝𝑜𝑙𝑒, tune trim coils
𝐼𝑡𝑟𝑖𝑚, and stop band corrector current 𝐼𝑠𝑡𝑟 . Tune trim coils
can shift vertical tune up to compensate for space charge
tune shifts and avoid strong integer stop band at 𝜈𝑦 = 4.
Stop band correctors are used to correct for all significant
resonances between 𝜈𝑦 = 4 and 𝜈𝑦 = 5. An extra calibration
term is also added in the model to compensate for observed
¤𝐵 = 𝜕𝐵

𝜕𝑡
effects, such as eddy current in quadrupole vacuum

chambers. Therefore, the Booster main quadrupole current
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is given by:

𝐼𝑞 = 𝐼𝑑𝑖𝑝𝑜𝑙𝑒 + 0.2 · (𝐼𝑡𝑟𝑖𝑚 + ¤𝐵 · 𝐶) + 0.4 · 𝐼𝑠𝑡𝑟 , (1)

where 0.2 and 0.4 are the turn ratios of trim and stop
band coils to main dipole coils, and 𝐶 is the ¤𝐵 calibra-
tion coefficient. According to measured data, the cali-
bration coefficients are determined to be 𝐶𝐻 = 3.4 and
𝐶𝑉 = 4.8 amp/T/sec [3].

The current model uses a fifth order polynomial to model
the gradient of a quadrupole based on its current:

𝜕𝐵

𝜕𝑟
= 𝑎0 + 𝑎1 · 𝐼𝑞 + 𝑎2 · 𝐼2𝑞 + 𝑎3 · 𝐼3𝑞 + 𝑎4 · 𝐼4𝑞 + 𝑎5 · 𝐼5𝑞 (2)

The normalized gradient equations for the quadrupoles
(short, long, eared vacuum chamber) are:

𝐾1,𝑠ℎ𝑜𝑟𝑡 = (1 − 0.00004179 ·
¤𝐵
𝐵
) · 1
𝐵𝜌𝐿

〈
𝜕𝐵

𝜕𝑟

〉
(3)

𝐾1,𝑙𝑜𝑛𝑔 = (1 − 0.000041942 ·
¤𝐵
𝐵
) · 1.003

𝐵𝜌𝐿

〈
𝜕𝐵

𝜕𝑟

〉
(4)

𝐾1,𝑒𝑎𝑟 = (1 − 0.000062913 ·
¤𝐵
𝐵
) · 1.003

𝐵𝜌𝐿

〈
𝜕𝐵

𝜕𝑟

〉
. (5)

Assuming we can take measurements at a flat porch during
the Booster cycle, where 𝐵 stays constant, the normalized
gradient equations we need to consider become:

𝐾1,𝐻 =
1

𝐵𝜌𝐿

〈
𝜕𝐵

𝜕𝑥

〉
(6)

𝐾1,𝑉 =
1.003
𝐵𝜌𝐿

〈
𝜕𝐵

𝜕𝑦

〉
, (7)

where the main Booster quadrupole strengths are determined
by two fifth-order polynomials 𝜕𝐵

𝜕𝑥
and 𝜕𝐵

𝜕𝑦
in the format of

Eq. 2. The two sets of polynomial coefficients used in the
current Booster model, summarized in Table 1, are derived
from a least square linear regression fitting to the measured
magnetic data.

Table 1: Booster Quadrupole Transfer Function Coefficients

Coefficient H Quad K1 V Quad K1
𝑎0 0.001818 0.002099
𝑎1 9.080 × 10−4 9.257 × 10−4

𝑎2 6.657 × 10−9 1.164 × 10−8

𝑎3 7.225 × 10−12 1.046 × 10−11

𝑎4 3.239 × 10−15 4.057 × 10−15

𝑎5 5.07 × 10−19 5.75 × 10−19

ORM MEASUREMENT ROUTINE
The orbit response matrix (ORM) quantifies the mapping

between orbit measurements (®𝑥, ®𝑦) and corrector settings

( ®𝜃𝑥 , ®𝜃𝑦) via [4]: (
Δ®𝑥
Δ®𝑦

)
= 𝑅

(
Δ ®𝜃𝑥
Δ ®𝜃𝑦

)
. (8)

Since the Booster orbit responds linearly to change in
corrector settings, each element of 𝑅 can be calculated using:

𝑅𝑖 𝑗 =
Δ (𝑥𝑖 or 𝑦𝑖)

Δ𝜃 𝑗
. (9)

Simulation with Bmad and Pytao
The Booster ring has a total of 48 BPMs and 48 correc-

tors, so a double-plane 𝑅 has a dimension of (48, 48). We
rebuilt the Booster optical model using Bmad [5] in order to
develop a streamlined process to get simulated ORMs. In
MAD-X, getting multiple ORMs requires running multiple
simulations and dealing with separate output files. Bmad’s
simulation program Tao has a python interface PyTao, so we
can run accelerator simulations in combination with Python
functions. Therefore, we developed a Python routine to get
simulated ORMs with different quadrupole settings. ORMs
are obtained by changing each corrector successively, com-
bining all the output orbits into an array, and calculating
each matrix element using Eq. (9).

Real Machine
In the real Booster machine, the Collider Accelerator De-

partment (CAD) Controls Group uses various software tools
to control and monitor accelerator elements. The correctors
are managed by FunctionEditor, which allows users to up-
load a time dependent current function to the power supply
of the magnets. In order to set correctors to a constant kick,
we define a trapezoid-shaped function whose flat top value
is the desired current value in FunctionEditor, and send it to
the machine (make live). We developed a script [6] that sets
three current functions for each corrector: zero kick (base-
line value), positive kick, and negative kick. After setting
the corrector, live BPM data is saved and the ORM values
is calculated by finding the slope of orbit data. The script
work flow is outlined in Fig. 2.

When processing data obtained from the ORM scipt, we
discover there are 1 missing corrector and 11 bad BPMs
(gets NaN values) in the real machine. As a result, the actual
ORM has a dimension of (37, 47). The raw matrix values has
unit of mm/Amps, and we convert them to m/radian to match
the values taken from simulation. We take data at 1.82 GeV,
which means 1 Amp in a corrector is 1.877 × 10−5 radian
kick. Figure 3 shows an example of an ORM taken from the
real machine after unit conversion.

QUADRUPOLE STRENGTH MODEL
We started with building a NN model for only the verti-

cal quadrupoles. Since all quadrupoles in the same plane
are wired in series, this means the NN model only has one
output, which is the k1 value for 24 vertical quadrupoles.
The reference ORM 𝑅𝑚𝑜𝑑 is taken in simulation with all
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Figure 2: Work flow of ORM measurement script.

Figure 3: Real ORM obtained using measurement script.

quadrupoles set to zero. Only vertical ORM is used for train-
ing this model because there is no coupling between the
horizontal and vertical plane.

When the quadrupoles have a non-zero kick, the measured
ORM differs from the reference ORM by:

Δ𝑅 = 𝑅𝑚𝑒𝑎𝑠 − 𝑅𝑚𝑜𝑑 . (10)

A single-plane simulated ORM of the Booster has a di-
mension of (24,24), so the flattened Δ𝑅 has a dimension of
(24 × 24, 1) = (576, 1). The NN model we train takes the
flattened Δ𝑅 as input, and predicts the vertical quadrupole
strength that caused the difference in ORM values.

In order to better represent ORM data from real machine,
we added a Gaussian noise with unit width and an ampli-
tude of 80 micron to the simulated orbit data during ORM
calculation. The amplitude is inferred from the amplitude
of noise in the off-diagonal blocks of the real ORM. Since
there is no coupling, all the fluctuations in the off-diagonal
blocks come from noise.

The NN model we built is a fully connected feed-forward
neural networks (FFNN) [7] with three layers and Expo-
nential Linear Unit activation function [8]. The model is
trained on 800 sets of simulated data, and reaches 99.5%

accuracy on 200 sets of simulated test data. In order to
get the quadrupole transfer function, we then increase the
PS current of vertical quadrupoles incrementally from 0 to
200 Amps, and use the trained NN model to predict the ac-
tual quadrupole strength k1. Figure 4 shows the comparison
between k1 values calculated from the traditional formula
Eq. (7) and k1 values predicted by NN model given ORM
measurements.

Figure 4: NN prediction of the mapping between vertical
quadrupole strength and power supply current.

Once we have predictions for k1 values, we can calculated
the gradient by reversing Eq. (7):

𝐵1,𝑉 =

〈
𝜕𝐵

𝜕𝑦

〉
=
𝐵𝜌𝐿

1.003
· 𝐾1,𝑉 (11)

To match the traditional formula (Eq. (2)), we do
a 5th degree polynomial fit on gradients and PS cur-
rents. There are several polynomial fit packages read-
ily available in Python, we found the best results come
from scipy.optimize.curve_fit, which allows the
user to define the value ranges on all the fit coefficients.
numpy.polyfit works fine within the range of given data,
but performs poorly on data outside the given fitting range.
Figure 5 shows the fitting results for the vertical quadrupole
transfer function.

Figure 5: Polynomial fit results for vertical quadrupole trans-
fer function.

CONCLUSION
In this work, we developed and tested a beam-based

method to determine magnet properties using ORM mea-
surements and NN models. Operational script is developed
to take ORM measurements in the AGS Booster. Preliminary
studies show that the proposed algorithm is able to repro-
duce a reasonable transfer function for vertical quadrupoles
in the Booster.
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