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Abstract
In order to steer beams through the center of focusing

elements, the field center with respect to adjacent Beam
Position Monitors needs to be known precisely. Often indi-
vidual qudrupoles are varied to find their center, where the
orbit does not change, but this requires costly field control for
each quadrupole. Here we analyze a beam-based Alignment
(BBA) technique that utilizes sextupoles. BBA can easily be
performed on sextupoles if each can be changed individually;
one simply finds the orbit where a change of a sextupole’s
strength does not change the tune. However, often also sex-
tupoles are powered in families. We therefore analyze a BBA
method for sextupoles for which the sextupole strength does
not have to be changed, but where the orbit can be changed
in one sextupole alone by means of a closed-orbit 3-bump.
A sextupole deflects the beam in the same direction for posi-
tive and for negative beam offsets, due to its quadratic field.
Minimal beam deflection therefore occurs in the center of
the sextupole. By changing the position at which the beam
enters the sextupole while measuring the corrector strengths
that close the 3-bump, one can therefore find the sextupole
center. Here, we explore the precision to which this method
can reconstruct the sextupole alignment.

INTRODUCTION
In the Electron Ion Collider (EIC), and in most storage

rings, family-powered sextupoles are set up in a configura-
tion where they are separated by drift regions, quadrupoles,
and other sextupoles powered in separate families. Figure 1
depicts the 3-bumps simulated in this procedure, where a sin-
gle sextupole in the "SX1_3" family of the Electron Storage
Ring (ESR) of the EIC is placed nearby three quadrupoles
and in between the first two. Because corrector coils are not
yet placed into the lattice, we model them as thin correc-
tors after each quadrupole. The three correctors around a
sextupole create a 3-bump that contains no other sextupole.

Figure 1: Diagram of a three-corrector bump system with a
sextupole between the first and second corrector.

Without the sextupole, the corrector strengths that close
the 3-bump can be computed to first order using the Twiss
∗ email address: jcw295@cornell.edu

parameters, or they can be measured with beam while the
sextupole families with members in the 3-bump are turned
off. A sextupole deflects the beam proportional to the square
of its distance from the sextupole center, by

𝜃𝑠 =
1
2
𝑘𝑙2 (𝑥𝑠 − 𝑥𝑜)2, (1)

where 𝑘𝑙2 is the field coefficient of the sextupole times it’s
length, 𝑥0 is the horizontal location of the sextupole center
and 𝑥𝑠 is the closed-orbit position in the sextupole. By
comparing the corrector strength to close the 3-bump with
and without sextupole, we can reconstruct the positioning
of the center of the sextupole based on Eq. (1).

Figure 2: Strength of corrector-2 that closes the 3-bump
with (green parabola) and without (red line) a sextupole
as a function of the bump amplitude, which is created by
corrector-1. The two curves meet when the orbit is in the
center of the sextupole.

For this method, several sextupoles can exist in the same
bump, as long as they are powered by seperate families and
only one of them is powered at a time.

METHODS
In order to simulate and numerically close these bumps,

we used the program Tao of the Bmad toolkit. We exited a
bump amplitude with corrector-1 and then ran a least square
optimization on 𝑀 = 83 beam position monitors to find
the stengths of correctors 2 and 3 that changed the BPMs
outside the 3-bump of Fig. 2 as little as possible. To each
BPM we added the same rms of Gaussian noise, results
for 0 µm, 1 µm, 10 µm will be shown. The following list
summarizes our BBA procedure:
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• Turn all sextupole families off that have a sextupole
within the 3-bump and store the closed orbit around the
ring as a reference. Give corrector-1 several strengths
that lead to bump amplitues up to several mm and close
the bump with correctors 2 and 3. This determines
the linear relation 𝑎 = 𝜃2/𝜃1 and 𝑏 = 𝜃3/𝜃1. The
relationship is linear, because the bump contains no
sextupole strength.

• Turn the three correctors off again and activate the fam-
ily of the studied sextupole as strongly as reasonable
whilst keeping all families turned off that also have
a sextupole in the bump. Make sure the studied fam-
ily has only one sextupole within the bump. Store the
closed orbit around the ring as a reference.

• Excite various bump amplitudes up to several mm. For
each, close the 3-bump so the orbit remains unchanged
outside the bump region. Record the quadratic relations
𝜃2 (𝜃1) and 𝜃3 (𝜃1).

• For each bump excitation 𝜃1, repeat the process of bump
closing and record the resulting bump strength to in-
crease the accuracy of 𝜃2 and 𝜃1 by averaging. Here
we averaged over 𝐵 = 10 bump closings.

• Observe the quadratic curves 𝜃2 (𝜃1) and 𝜃3 (𝜃1) and
find their intersection with the linear relations obtained
without sextupoles: 𝜃2 = 𝑎𝜃1 and 𝜃3 = 𝑏𝜃1. At the
resulting bump amplitude, the orbit goes through the
center of the sextupole.

To better observe the quadratic relationship, we chose to
remove the linear term from the raw data by subtracting 𝑎𝜃1
and 𝑏𝜃1 from the strength of the second and third corrrector,
leaving only the quadratic term that is due to the sextupole,
as shown in Fig. 3. It’s minimum determines the bump ampli-
tude that leads through the sextupole center. Without system
errors, the extremum for the second and third corrector occur
at the same bump amplitude. With BPM errors, there is a
discrepancy between the two extremum locations, which
gives an experimental measure of the result’s uncertainty.

RESULTS
For any bump, excited by an angle 𝜃1 in the first magnet,

we record which angle 𝜃2 in the second magnet closes the
bump. The difference in this 𝜃2 setting when the sextupole is
on, vs. when it is off is referred to as Δ𝜃2 and it is a parabola
with respect to the beam’s position in the sextupole. We
use the minimum of this parabola to determine the center
of the sextupole. In the following, we always subtract this
linear term, and 𝜃2 therefore will refer to the difference Δ𝜃2
for simplicity, it describes the angle in the second corrector
which compensates the deflection 𝜃𝑠 in the sextuple at the
end of the 3-bump, at the locaiton of the third corrector,
𝜃2
√
𝛽2 sin(𝜓3 − 𝜓2) = −𝜃𝑠

√
𝛽𝑠 sin(𝜓3 − 𝜓𝑠) with the com-

mon notation for Twiss parameters at the positions of the

Figure 3: second and third corrector data with linear term
removed (Top) and without linear term removed (Bottom)
in an ideal lattice without BPM errors. Not that the extrema
of the parabola are at the orgigin, because the sextuple was
not misaligned in this example.

sextupole and the 2nd and 3rd corrector, indicated by indices
𝑠, 2, and 3.

The goal of this study was to test whether or not this Sex-
tupole BBA Method could realistically produce results for
the sextupole alignment to a level of precision that is use-
ful for accelerator applications (within at least 100 µm of
uncertainty). As expected, when there are no Gaussian er-
rors implemented in the BPMs, this sextupole BBA method
works to machine precision. When 1 µm of Gaussian error
was implemented into the BPMs, the method was precise
to the order of 10 µm. When 10 µm of Gaussian error was
implemented into the BPMs, the method was precise to the
order of 50 µm, following approximately a square law of
𝜎𝑥0 ≈ 7𝜎BPM.

Assuming Gaussian BPM-noise errors at the order of
10 µm is not unreasonable.

EQUATION ESTIMATING THE
UNCERTAINTY

The following equation was derived to estimate the ex-
pected precision with which the Sextupole BBA Method can
determine the center of a sextupole.

We create a 3-bump through the sextupole and scan its
amplitude in the sextupole from a range of 𝜃1 values centered
symmetrically around 0, scanning this region with 𝑁 data
points. The rms uncertainty with which we can determine 𝜃2
is 𝜎𝜃2 ; the parabolic relationship between these correctors is
𝜃2 = 𝑐+𝑑𝜃1+𝑒𝜃2

1, where the three coefficients are determined
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by a least-square fit for the 𝑁 data points of the parabola.
The least-square-fit results are 𝑒 = (𝜃2𝜃

2
1 − 𝜃2𝜃

2
1)/(𝜃

2
1

2
− 𝜃4

1)
and 𝑑 = 𝜃2𝜃1/𝜃2

1, where overlines indicate averages over the
𝑁 data points. Note that these are symmetrically chosen so
that 𝜃𝑛1 = 0 for odd 𝑛.

The minimum of the parabola is 𝜃0 = − 1
2𝑑/𝑒. To estimate

the uncertainty of this minimum, one finds that for every se-
ries of 𝑁 measurements Δ𝜃0 = − 1

2𝑒2 (𝑒Δ𝑑 − 𝑑Δ𝑒). Squaring
and averaging over many of such series leads to 𝜎2

𝜃0
. Note

that Δ𝑑Δ𝑒 averages to 0 because even orders of 𝜃1 average
to 0, leading to

𝜎2
𝜃0

=
𝜎2
𝜃2

𝑁𝑒2
©­« 1

4𝜃2
1

+ 𝑑2

4𝑒2 (𝜃4
1 − 𝜃

2
1

2
)

ª®¬ . (2)

Because the corrector angle needed to close the bump with-
out sextupole is subtracted, 𝜃2 only compensates the orbit
deflection 𝜃𝑠 from the sextupole, i.e. 𝜃2

√
𝛽2 sin(𝜓3 − 𝜓2) =

−𝜃𝑠
√
𝛽𝑠 sin(𝜓3−𝜓𝑠) and 𝜃𝑠 = 1

2 𝑘𝑙2𝛽1𝛽𝑠 sin2 (𝜃𝑠 − 𝜃1) (𝜃1−
𝜃0)2. Therefore 𝜃2 = 𝑒(𝜃1 − 𝜃0)2 where the proportionality
constant 𝑒 only depends on Twiss parameters, and then

𝜎2
𝜃0

=
𝜎2
𝜃2

𝑁𝑒2
©­« 1

4𝜃2
1

+
𝜃2

0

(𝜃4
1 − 𝜃

2
1

2
)
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Choosing 𝜃1 to consist of a large number 𝑁 , uniformly and
symmetrically spaced in the interval of width 2Δ𝜃1, simpli-
fies to

𝜎2
𝜃0

=
3𝜎2

𝜃2

4𝑁𝑒2Δ𝜃2
1

(
1 +

15𝜃2
0

Δ𝜃2
1

)
. (4)

Expression 𝑒 by the Twiss parameters leads to

𝑒 = −1
2
𝑘𝑙2𝛽1𝛽𝑠 sin2 (𝜓𝑠 − 𝜓1)

√
𝛽𝑠 sin(𝜓3 − 𝜓𝑠)√
𝛽2 sin(𝜓3 − 𝜓2)

. (5)

The 3-bump can only be closed to a precision 𝜎𝜃0 that
is proportional to the precision of the BPM that closes the
bump. This uncertainty will lead to an uncertainty of the
sextupole offset 𝑥0, given by

𝜎2
𝑥0 = 𝛽𝑠𝛽1 sin2 (𝜓𝑠 − 𝜓1)𝜎2

𝜃0
. (6)

The uncertainty in 𝜃2 is due to the error in BPM readings
𝜎𝐵𝑃𝑀 . With the 𝑀 BPMs at phases 𝜓𝑚 all having the
same uncertainty, a least square minimization of these BPM
readings by means of the second corrector strength leads to

(corrector strength)2 =
𝜎2

BPM

𝐵
∑𝑀

𝑚=1 𝛽2𝛽𝑚 sin2 (𝜓𝑚 − 𝜓2)
.

(7)
The error reduction from averaging over 𝐵 BPM minimiza-
tions is included in the denominator. This formula holds for
the corrector strength with sextupoles and also for the one
without sextupoles. The difference 𝜃2 therefore has a 𝜎2

𝜃2
that is twice as large.

Some more approximations: If one scans far across the
center of the sextupole, i.e. Δ𝜃1 ≪ 𝜃0, the term 15(𝜃0/Δ𝜃1)2

can be neglected against 1. If we set all sin factors to an
average value of 1/

√
2 and use an average 𝛽 for each beta

function, we obtain

𝜎2
𝜃0

≈
12𝜎2

𝜃2

𝐾𝑙22𝛽
4
𝑁𝑒2Δ𝜃2

1

, (8)

𝜎2
𝑥0 ≈ 𝛽

2

2
𝜎2
𝜃0
, (9)

𝜎2
𝜃2

≈
4𝜎2

BPM

𝐵𝑀𝛽
2 and finally (10)

𝜎2
𝑥0 ≈

24𝜎2
BPM

𝐵𝑀𝑁𝑘𝑙22𝛽
4
Δ𝜃2

1

. (11)

In the ESR of the EIC, 𝛽 ≈ 20 m, and 𝐾𝑙2 ≈ 1 m−2.
As noted above, we used 𝐵 = 10, 𝑀 = 83, and measured
𝑁 = 21 setting of the first corrector while scanning over
2Δ𝜃1 of 1 mrad, leading to

𝜎𝑥0 ≈
𝜎BPM

5
. (12)

This formula would approximate a precision of the method
significantly superior to the simulation result, including av-
eraging over all BPMs, over several measurements, and for
many data points along the parabola. It is therefore con-
cluded that a careful analysis of these averaging procedures
may increase the precision significantly beyond current sim-
ulation results.

Even though the simulation results already indicate use-
ful applicability of this method with sub 100 µm precision,
significantly better precision may yet be possible.

CONCLUSION
The here presented Sextupole BBA technique involving

the study of an orbital bump through one member of a sex-
tupole family was simulated with the goal of achieving an
accuracy of at least 100 µm, to be useful in accelerator appli-
cations. When tested upon an ideal lattice without random
errors as a control group, the Sextupole BBA method was
able to return the center of the sextupole to machine preci-
sion. In this study we analyze BPM errors as high as 10 µm,
a realistic order of error for modern instrumentation. The
Sextupole alignment can be determined with uncertainty to
the order of 50 µm, demonstrating potential for this method
to be used in storage rings that power sextupoles in families.
And yet better precision may be possible, because an Eq. (11)
was derived that estimates the order of precision to which
this BBA technique should be able to locate the offset of
the sextupoles. This estimation for the uncertainty is signifi-
cantly smaller than the precision found in simulated results.
Therefore, studies to expand upon this should be done that
involve testing how to simulated precision improves with
the use of more BPMs or more averaging.
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