Design and Construction of Optical System of the Coronagraph for Beam Halo Observation in SuperKEKB

Gaku Mitsuka, Hitomi Ikeda, Toshiyuki Mitsuhashi (KEK)

Outline

- Introduction to the SuperKEKB e⁺e⁻ collider
- Design and construction of the coronagraphs in SuperKEKB
- First measurements in the SuperKEKB low/high energy rings
- Summary

See MOPLXGD1 (Funakoshi)

The SuperKEKB e⁺e⁻ collider

- Major upgrade to the preceding KEKB e⁺e⁻ collider
- Provides tons of B, τ, etc. to Belle II
- Two main rings
 - 7 GeV e⁻ storage ring (HER)
 - 4 GeV e⁺ storage ring (LER)
- Injector complex
 - Electron/positron linac
 - 1.1 GeV positron damping ring (DR)
- "Nano-beam" collision scheme
- Design parameters
 - Target Luminosity: $8 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}$ (= KEKB x 40)
 - Beam Currents: 3.6 A (LER) and 2.6 A (HER)
 - Horizontal crossing Angle: 41.5+41.5 mrad
 - $\beta_y^* \sim 0.3 \text{ mm}$
 - $\sigma_x^* \sim 10 \, \mu m$, $\sigma_y^* \sim 50 \, nm$, $\sigma_z \sim 6 \, mm$

Eclipse of the Sun and accelerators

- Beam halo may cause unwanted beam loss or long-term irradiation leading to luminosity degradation and damage to accelerator components.
- Understanding and hopefully lowering beam halos have been attempted in high-power and/or high-luminosity accelerators.
- Our challenge: non-invasive measurements with sensitivity better than 1e-5.

Can we use a normal telescope to see beam halo?

We aren't free from strong diffraction fringes

Three stages of the Lyot's coronagraph

Ref: B. F. Lyot Month. Notice Roy. Ast. Soc, p580, 99 (1939).

Synchrotron radiation beam line in SuperKEKB

Coronagraph is ~60 m downstream of the SR source point.

Key parameters in the 1st objective stage design

- 1. Large transverse magnification is necessary, because leakage backgrounds in the 3rd stage are anti-proportional to the transverse magnification of the 1st objective system.
 - → Needs long focal length
- 2. Front principal plane of the objective system is set at the diamond mirror aperture.

We follow a telephoto system for the 1st objective system.

Gregorian system in the 1st objective stage

- To eliminate a chromatic aberration, the 1st system adopts a reflective mirror system rather than a refractive lens system.
- We choose a Gregorian system using an elliptical-concave second mirror contrary to a Cassegrain system using a hyperbolic-convex mirror.

Relation of source point and mirror image

Aperture of the diamond mirror here

Transverse magnification
$$\beta = \frac{7028}{12235} = 0.574$$

Beam image and diffraction fringes

Clearly observed ~15th order fringes ₁₄

2nd stage: Kepler-type re-diffraction system

Diffraction image on the Lyot stop

Observed image

Expected double peaked diffraction pattern

Re-diffraction by a field lens

Re-diffraction fringes blocked by a Lyot stop

For efficiently blocking the re-diffraction fringes, an opaque disk with large diameter is preferred.

→ Reason why a large magnification in the 1st stage is essential!

3rd stage: Kepler-type relay system

Final magnification to the beam image at final stage $\beta_1 \times \beta_2 \times \beta_3 = 1.10$

First shot with a gated camera in HER at 7 GeV

Beam core

Core blocked by a Φ3mm disk

Re-diffraction fringes blocked by the Lyot stop

Bunch-current dependence in HER

Due to beam orbit changes

Diffraction fringes made by the latter optics than the Lyot stop

Leakage of diffraction fringes by the diamond mirror

Comparison of halos between HER and LER

Sensitivity in beam halo measurement

Ratio of Brightest tail/Core ~ 2e-3

Extending the exposure τ to have a brightest spot 12 bit max. counts and looking at beam halo (few counts + ped.), the beam halo/brightest ratio ~ 4 ADC counts/12 bit counts ~ 2e-3

Ratio of beam halo/Core ~ 2e-3 x 2e-3 ~ O(1e-6)

Summary

- Understanding and hopefully lowering beam halo are required to get the best performance of various accelerators.
- We developed two coronagraphs in SuperKEKB enabling non-invasive and high-sensitivity measurements.
- Sensitivity was ~O(1e-6) compared with the beam core.
- Future prospects: feedback of optical axis and opaque disk movement, etc.

Thank you for your attention!