Research and Development Towards Cavity-Based X-ray Free-Electron Lasers

Gabriel Marcus, on behalf of the CBXFEL collaboration IPAC 2022 14 June 2022

The need for a cavity-based x-ray free-electron laser (CBXFEL)

CBXFEL concepts and enabling technologies

'Cold' x-ray cavity experiment at the LCLS XPP instrument

SLAC/ANL/Spring-8 CBXFEL R&D project update

Summary

Conventional x-ray sources are long and incoherent.

Nanoscale dynamics take place at femtosecond timescales $\rightarrow 4^{th}$ generation FEL sources

Hard x-ray FELs largely based on SASE

- Transverse coherence 🗸
- Short pulses 🗸
- Stochastic temporal/spectral structure imes

How to obtain a fully coherent and stable hard x-ray source?

A few lasing schemes at FELs

External seeding

Self-seeding

Cavity-based

- ternal seeding
- Implementations: All operating XFEL facilities
- Advantages: Easy alignment, tunability (γ , λ_u , K), transverse coherence
- Disadvantages: limited longitudinal coherence, stochastic temporal/spectral content, large bandwidth $\Delta E/E \approx \rho (10^{-3} 10^{-4})$, fluctuations.
 - I: Direct seeding with High-Harmonic Generation (HHG) laser, indirect seeding with subharmonic laser: High-Gain (HGHG), Echo-Enabled (EEHG). FERMI, FLASH, SXFEL.
 - A: Full coherence, tunability (where coherent seed available), adopts stability properties of seed
 - D: HHG limited to 10s of nm, HGHG/EEHG demonstrated down to ~4 nm, but e-spread growth and other limitations create challenges toward 1 nm.
 - I: Channel-cut seed (SACLA), Forward Bragg Diffraction wake (PAL/LCLS/EXFEL), multi-stage (EXFEL), SXR grating-based (LCLS).
 - A: Wavelength tunable, can be nearly fully coherent, multiple colors possible, narrow bandwidths.
 - D: Power fluctuations, spent electrons in second stage (without fresh bunch), SASE dependent.
 - I: No implementations at XFEL facilities
 - A: Fully coherent pulses, stable output, highest spectral brightness
 - D: Requires ~ MHz rep-rate, limited wavelength tunability, alignment challenges, cavity optics development needed.

Historical cavity FEL developments

FEL Oscillators (FELO): High Q Cavity

 1977: First FEL was an oscillator at 3.4 um. Low-gain, 500 kW stored power, 1.5% outcoupling (Q ≈ 70).

[D.A.G. Deacon et al., PRL 38, 892 (1977).]

- Distinguishing features
 - High Q cavity, 10s 100s of passes to saturation, high stored power
 - Narrow bandwidth determined by Q and e-beam
 - Cavity optics govern transverse mode
 - Sensitive to angular and temporal alignment
- Early x-ray proposal: Low gain from 19 pC, 2 ps e-beam. 400 passes to saturation, 2 meV bandwidth.

[Kim, Shvyd'ko, Reiche, PRL 100, 244802 (2008).]

Regenerative Amplifier FEL (RAFEL): High-Gain Cavity

 1999: Los Alamos Advanced FEL used a holey mirror to outcouple 16 um light. ~10 passes to saturation.

[D. Nguyen et al., Nucl. Instrum. Methods Phys. Res. 429, 125 (1999).

Distinguishing features

Bragg mirrors

- High gain, < 10 passes to saturation, low stored power
- Bandwidth determined by SASE or mirror bandwidth
- Gain-guiding governs transverse mode
- Gain-guiding accepts some angular and temporal mis-match

High rep-rate facilities are coming online

Key enabling technology for a CBXFEL

X-ray cavity footprints become more reasonable

Diamond as the material for Bragg mirrors

Optics development: High-pressure high-temperature Type IIa diamonds

At select HXR energies, diamond Bragg mirrors provide ~99% reflectivity for narrow bandwidths

Bragg Reflection

Sample 4-bounce reflections

HKL	Energy 45° (eV)	4 Bounce FWHM (eV)
220	6952.3	0.139
400	9831.9	0.079
440	13904.4	0.048

Diamond has excellent thermomechanical properties: record high reflectivities, ultra-high thermal diffusivity, ulta-low thermal expansion at low temp., radiation hard

S. Stoupin, Y. Shvyd'ko, Phys. Rev. Lett. **104**, 085901 (2010)

Diamond growth and preparation process

High-purity carbon source

Carbide piston

Step 1: HPHT growth

Carbide die

Pressure medium

Heater

Step 6: post machining characterization 8

R. Burns, et al. "HPHT growth and x-ray characterization of high-quality type lia diamond" (2009) H. Sumiya, "HPHT Synthesis of Large, High-Quality, Single Crystal Diamonds" (2012)

Diamond characterization

White beam topography and rocking curve imaging

Topography: identify and locate crystal defects such as inclusion, dislocation, stacking faults, etc. Identify potential high optical quality 'working area'.

Rocking curve imaging: spatially resolved measurement of the reflectivity, rocking curve width, and most importantly, the 'flatness' of the diffraction Bragg planes.

J. MacArthur, D. Zhu, A. Halavanau

Cold cavity experiment at XPP (LDRD)

Cavity optics: diamond (400) x4 Photon energy: 9.831 keV, 45 degree Bragg Cavity round trip Length: ~14.16 m Return path offset: 300 mm Cavity round trip time: ~47.25 ns All in vacuum

Cavity schematic

Diagnostics

4 PIPS diodes for rocking curve scans, integrating

4 Fast Si diodes + digitizer, Acquiris 8-bit at 2 Gsps

1 Andor iStar camera + YAP:Ce provides ns time resolution of x-verse profile, 1 second exposures

1 Andor Zyla camera + Yag:Ce,

integrating higher spatial resolution

8 GigE cameras monitoring diamonds, grating, scintillators, etc.

Diamond mirrors

Transmission grating

For both in-coupling and out-coupling radiation to and from the cavity

RIKEN

Argonne

Diffraction pattern, -1, 0, +1 orders

Transmission grating details

• Nanofabrication of diamond diffractive optics looks sufficiently mature in distributing x-ray beam power between different diffraction orders.

- CVD diamond grating was used for in/outcoupling
- From Stanford nanofab, K. Li, A. Sakdinawat, Y. Liu

13

Chambers

Optics assemblies in the chambers

Downstream chamber

Upstream chamber

More cavity

Gabe and River

Rachel and River

Cavity ringdown

5% grating in higher orders, down collimated, intracavity focusing f ~ 100 m

RIKEN

Large area and fast silicon diode is used to record the pulse intensity evolution – **Ring down.**

Round trip efficiency was measured to be typically ~70% in early passes and approaches ~75% in later passes.

Transmission grating 0^{th} order efficiency measured to be ~ 81% for this grating.

1.5

Leads to estimates of ~86 - 92% single round trip efficiency. Error bar should be less than ~2%.

Other tests include thinner grating substrates, with/without down collimation, multiple intracavity focal lengths, no intracavity focusing, intentional misalignment, steering to bad parts of diamond, varying incoming pulse intensity, etc...

Incoming beam subject to FEL jitter

Transverse cavity dynamics with iStar – beam profile evolution over multiple round trips

Processed Andor iStar measurements of the out-coupled beam profile as a function of round trip. **10ns** gate time, 100 pulses per exposure, 10-50 exposure average per image shown below.

Without intra-cavity focusing

SL

Beam position and size as a function of round trip (with intra cavity focusing lens)

Stable cavity oscillations

Analytical and numerical investigation – cavity stability theory

Analytical treatment, $q_{out} = \frac{Aq_{in} + B}{Cq_{in} + D}$

Numerical propagation using Fourier optics and dynamical theory of x-ray diffraction for diamonds

CBXFEL project – 'warm' cavity

DOE funded SLAC/ANL/Spring-8 collaboration to conduct targeted R&D

Construct a rectangular X-ray cavity that encloses the first 7 LCLS-II HXR undulator modules.

Investigate crucial aspects related to CBXFEL physics using a pair of electron bunches from the SLAC copper RF linac.

Both XRAFEL and XFELO

Perform 2-pass gain measurements and cavity ringdown measurements for low and high gain schemes.

Demonstrate cavity tolerance and stability requirements necessary for both schemes.

R&D project from FY20 through FY24.

• Timed well to coincide with high rep-rate operation with LCLS-II.

CBXFEL project overview

Station A/B: Chambers that house 4 diamond mirrors, 2 Beryllium CRLs, basic alignment diagnostics, beam overlap diagnostics

Station C: Chamber that houses alignment diagnostics + beam sampling diamond transmission grating

Station D: Middle of return line spatial diagnostics

Station E: Diagnostic station outside the cavity, for measurements using diffracted beam sample from station C grating

Station G (not shown): Additional temporal, intensity, spectral diagnostics far downstream in XPP experimental hutch in the near experimental hall

Undulator hall provides requisite temperature stability for sensitive opto-mechanical hardware

Cavity wraps 7 undulator sections

Total cavity length ~ 66 m (~ 220 ns, 624 linac RF buckets)

2 3 x [mm]

4 5

"Drum head" diamond (~ $20 \,\mu$ m thickness) to increase output coupling

0 1

4 5

1 2 3 x [mm]

SL

Argonne

value	Unit
C*(400)	-
45	degree
9.83	keV
1.26	Angstrom
79	meV
8	μrad
	Value C*(400) 45 9.83 1.26 79 8

- Motion stacks leveraging pitch and roll nano-positioning stages (D. Shu, *et al.*, APS Nanopositioning Support Lab)
- Laminar weak-link structure with resolution and stability < 50 nrad
- UHV compatible
- Proof of principle pilot stage (full stack) at ANL demonstrates strictest requirements – correction of angular cross talk between linear and tip-tilt stages (don't steer x-rays while scanning delay)

D. Shu *et al*, MEDSI2020. D. Shu *et al*, SRI2021

D. Shu, et al.

Motion stack

With BPMs and BODs

3

Ε

- microscope (M)

- 1D strip detector

And cable management

- High efficiency, low loss, wavefront ٠ preserving beryllium compound refractive lenses (CRL) provide focusing in the stable cavity
- CRLs have high transmission, excellent ٠ image quality, and are radiation hard

Z. Ojao, et al., APL 119 (2021) 011105

x [µm]

- A transmission-geometry CVD diamond phase grating as a beam sampler
- Measure the FEL amplification processes and cavity ring-down in-situ
- Silicon diode for cavity ring-down
- Scintillator based high-res beam profile monitor

RIKEN

3

Ε

- microscope (M)

- 1D strip detector

CBXFEL concepts unlock true potential of a HXR laser

- XRAFEL source assuming LCLS-II-HE parameters + 300 m RT length cavity produces coherent, stable, narrow bandwidth hard x-rays
- Peak and average brightness 2-3 orders of magnitude greater than single pass SASE amplifiers
- Realize the potential of a **true x-ray laser** to drive qualitative advances in many areas of science: x-ray photon correlation spectroscopy, coherent diffractive imaging, single-particle imaging, nonlinear x-ray optics, x-ray quantum optics, etc.

Ongoing CBXFEL studies

In March 2021, Eu-XFEL and DESY hosted a workshop

Opportunities & challenges of cavity-based X-ray free-electron lasers https://indico.desy.de/event/25361/

CBXFEL Design studies:

- 1. XFELO w/ 8 GeV linac (ANL)
 - 10⁹-10¹⁰ ph/pulse
 - 2-6 meV bandwidth
 - 20-50 m undulator
- 2. XFELO/RAFEL w/ Eu-XFEL Pulse train (Hamburg)
 - 7x10¹¹ ph/pulse
 - 76 meV bandwidth
 - 4 SASE1 undulator segments
- 3. XRAFEL w/ LCLS-II He (SLAC)
 - 10¹⁰-10¹³ ph/pulse
 - 100 meV bandwidth
 - 108 m undulator

 $\mathsf{XFELO} @ \mathsf{Petra} \, \mathsf{IV} \, \mathsf{storage} \, \mathsf{ring} \, \mathsf{from} \, \mathsf{DESY} \, \mathsf{also} \, \mathsf{explored} \\$

R. Lindberg et al., PRSTAB 14, 010701 (2011)

P. Rauer et al., FEL2019, TUP009 (2019), also P. Rauer Dissertation

G. Marcus et al., Phys. Rev. Lett. 125, 254801 (2020)

Acknowledgements

J. W. J. Anton L. Assoufid K. Goetze W. Jansma S. Kearney K.-J. Kim Y. Li R. Lindberg S. Mashrafi A. Miceli P. Pradhan X. Shi D. Shu Y. Shvyd'ko J. P. Sullivan K. Suthar M. White

J. Delong Y. Ding F.-J. Decker Y. Feng G.L.Gassner A. Halavanau J. Hastings E. Hemsing Z. Huang J. Krzywinski Y. Liu A. Lutman J. MacArthur A Montironi R. Margraf J. Welch

SLA

D. Nguyen Y. Nosochkov H.D. Nuhn T. Raubenheimer R. Robles A Sakdinawat T. Sato T. Tan H. Wang M. Woodlev J. Wu L. Zhang D. Zhu A. Marinelli J. Duris J. Tang

NATIONAL

ACCELERATOR

LABORATORY

K. Tamasaku T. Osaka

B. Lantz

Thanks to our sponsors for the strong support!

XFELs provide the medium by which high power x-rays can be generated.

SASE XFELs, while transversely coherent, have statistical properties that are characteristic of chaotic polarized sources – not a true laser.

High-brightness, high-repetition rate *e*⁻ beam delivery systems are (coming) online – a good time to develop mature x-ray cavity technologies.

CBXFELs can deliver fully coherent, stable, high average and peak brightness hard X-ray pulses and provide significant advances for many areas of science.

We hope to demonstrate CBXFEL technologies in the very near future!

Thanks for your attention! Questions?