Path to High Repetition Rate Seeding: Combination of High Gain Harmonic Generation with an Optical Klystron

Georgia Paraskaki, E. Allaria, E. Ferrari, W. Hillert, L. Schaper, E. Schneidmiller

THOXSP3 IPAC22, 16-06-2022

Outline

Introduction to seeded FELs and the need for high repetition rate seeding

- **♦** The optical-klystron high-gain harmonic generation (HGHG) FEL
 - ➤ The layout
 - Simulation results of OK HGHG
 - Without e-beam energy chirp
 - With e-beam energy chirp

Summary

The high-gain FEL

Self-amplified spontaneous emission

Simulated with Genesis 1.3 v4

- Wavelength tunability
- Hard x-rays possible
- MHz repetition rate possible
- Poor longitudinal coherence
- Shot-to-shot fluctuations

The high-gain FEL

External seeding and harmonic generation

Simulated with Genesis 1.3 v4

- Longitudinal coherence
- ✓ Shot-to-shot stability
- Shorter saturation length
- Control over the FEL radiation properties
- ✓ Synchronization of FEL pulse to seed laser

- Highest repetition rate
- Shortest possible wavelength
- Wavelength tunability

Requirements on seed lasers:

- Hundreds MW of peak power
- Shortest possible wavelength
- fs duration
- Pulse energy stability
- Wavelength stability
- Wavelength tunability

Why high repetition rate?

Science shapes the future of FELs

Copyright: European XFEL / Blue Clay Studios

Copyright: European XFEL / Marius Schmidt

Full coherence & high rep. rate:

- will tremendously increase the average flux
- will improve statistics
- will maintain stability and coherence

Combining the standard high gain harmonic generation with an optical klystron scheme to achieve high repetition rate seeding

Standard high gain harmonic generation

Standard HGHG

The optical klystron

Standard HGHG

Optical klystron

The optical klystron

Standard HGHG

Optical klystron

The optical klystron (OK) high gain harmonic generation

Standard HGHG

Optical klystron HGHG

Simulation results Comparison of an OK-HGHG to a standard HGHG scheme

Can we reduce the seed laser power and still achieve the same output FEL pulse properties?

Simulation parameters

Simulated with Genesis 1.3 v4

FLASH2020+ parameters				
Electron beam parameters				
Peak current	500 A			
Energy	750 MeV			
Bunch duration	110 fs FWHM (flat-top)			
Emittance	0.6 mm·mrad			
Unc. energy spread	75 keV			
Seed laser parameters				
Pulse duration	33 fs rms (Gaussian)			
Lattice parameters				
Modulator periods	30			
K _{rms} modulator	3.83			
Modulator/ Radiator period	82.6 mm/33 mm			
Modulator length Power gain length	2.5 m 0.94 m			

Optimizing for 8% bunching at minimum seed power

Significantly lower seed power and slightly higher energy spread are required with the optical klystron

		n=8 →	n=15
Seed power	OK HGHG	0.041 MW →	0.26 MW
Seed power	Standard HGHG	21 MW →	83 MW

Optimizing for 8% bunching at minimum energy spread

Lower seed power and higher energy spread are required with the optical klystron

		n=8 →	n=15
Seed power	OK HGHG	0.041 MW →	0.26 MW
Seed power	Standard HGHG	21 MW →	83 MW

Output FEL radiation

after 4th undulator segment

15th harmonic of a 300 nm seed laser wavelength

	Bunching	Energy spread @ end of modulator	FWHM relative BW	Pulse duration rms	Pulse energy	Seed laser peak power
Standard HGHG	7%	580.9 keV	9.10-4	18.9 fs	26.3 µJ	61 MW
OK HGHG	7%	766.4 keV	9.3·10 ⁻⁴	21.5 fs	26 μJ	0.17 MW

reduction factor of 360

Longitudinal coherence 🗸 High repetition rate ✓

Damage threshold Shorter wavelengths **V**

Simulation results OK-HGHG and standard HGHG *with a linear e-beam energy chirp*

Is the linear chirp detrimental to the output FEL pulses, or can we recover their properties by appropriately optimizing?

HGHG

Bunch compression

$$s_f = s_i + R_{56} \delta$$

$$\delta = \delta_0 + hs_i$$

$$\rightarrow C_{BC}^{-1} = ds_f/ds_i = 1 + hR_{56}$$

$$\rightarrow$$
 C_{HGHG}⁻¹ = $\lambda'_{HGHG}/\lambda_{HGHG}$ = 1+ HB

OK HGHG - Initial distribution

OK HGHG - Compression

OK HGHG - After chicanes

OK HGHG - After compression

Optical klystron HGHG with a linear energy chirp

Optical klystron HGHG with a linear energy chirp

	FWHM relative BW	Pulse duration rms	Pulse energy
Without chirp	8.1 10 ⁻⁴	22.2 fs	26.6 µJ
With chirp	7.9 10 ⁻⁴	21.5 fs	24.2 µJ

Standard HGHG with a linear energy chirp

Standard HGHG with a linear energy chirp

	FWHM relative BW	Pulse duration rms	Pulse energy
Without chirp	8.7 10 ⁻⁴	18.9 fs	26.6 µJ
With chirp	7.5 10 ⁻⁴	20.7 fs	28.6 µJ

Summary

Optical-klystron based HGHG → 2 to 3 orders of magnitude lower peak power

- relaxes damage threshold
- increases **repetition rate** of seeded radiation **V**
- decreases the wavelength of seeded radiation
- can be **immediately tested** in existing FEL beamlines
- Electron bunches with **linear energy chirp** can be used **V**

Shot to shot stability **V**

Response to fluctuations

Positive first experimental outcomes

High repetition rate seeded free electron laser with an optical klystron in high-gain harmonic generation:

Georgia Paraskaki, Enrico Allaria, Evgeny Schneidmiller, and Wolfgang Hillert Phys. Rev. Accel. Beams 24, 120701

Proof of principle experiment at SXFEL:

J. Yan, Z. Gao, Z. Qi, K. Zhang, K. Zhou et al. Self-amplification of coherent energy modulation in seeded free-electron lasers. Phys. Rev. Lett., 126:084801, Feb 2021.

IPAC22 talk & poster by H. Deng: TUISP2

Thank you for your attention!

Questions before the coffee break?

