A New Compact 3 GeV Light Source in Japan

THE THE

Nobuyuki Nishimori on behalf of the Japanese 3 GeV accelerator team

QST

A new 3GeV MBA light source named NanoTerasu is upcoming. Building construction started in 2019.

NanoTerasu will form a Japanese photon science platform together with SPring-8, which has covered a wide spectral range from UV-to-hard X-rays.

NanoTerasu focuses on brighter and more coherent soft to tender X-rays with superior stability and reliability.

3GeV Linac

3GeV Linac

3GeV storage ring

3GeV Linac

3GeV storage ring

1991

Experimental hall

Outline

- 1. Light source overview
- 2. Accelerator system
 - 2-1. Storage ring Lattice, Magnet, Vacuum, RF, Beam injection
 - 2-2. Injector Linac
- 3. Schedule & Status
- 4. Summary

1. Light source overview

Accelerator system:

110 m

- Storage ring target emittance set around 1 nm.rad providing a high coherence at SX wavelengths
- 3-GeV C-band full-energy injector linac enabling a future extension to SX FEL (Free Electron Laser)

for future upgrade

Ring parameters	
Beam energy	3 GeV
Natural emittance	1.14 nm.rad
Stored current	400 mA
Max. number of undulators	14
Max. number of multi-pole wigglers (MPWs)	14

Beam size at undulator center

1. Light source overview

Undulators and MPWs in the first phase 10 beamlines

1. Light source overview

- Brilliance ~10²¹ photons/sec/mm²/mrad²/0.1% b.w. for 1-3 keV
- MPW Hard X-ray (HX) sources

APPLE-II is the workhorse of the SX sources.

BL	ID	w ^(mm)	N _w
02U 07U	APPLE-II	56	71
06U 08U	APPLE-II	75	53
13U	4 Seg. APPLE-II	56	11 x 4

2-1. Storage ring (SR): 4BA lattice

	Ring parameters
	Natural emittance
-	Energy spread

Energy spread	0.084 %
Betatron tune (👷 y)	(28.17, 9.23)
Natural chromaticity (🗶 y)	(-60.50, -40.99)
Damping partition number (J_x, J_y, J_z)	(<mark>1.389</mark> , 1.0, 1.611)
RF accelerating frequency	508.759 MHz
Harmonic number	592
Natural bunch length	2.92 mm (9.74 ps)

Magnet	Max. fields	#/cell	#/ring
B-Q combined	0.87 T -7.1 T/m	4	64
Quadrupole	49 T/m	10	160
Sextupole	1540 T/m²	10	160

H-focusing: 8 quads. V-focusing: 4 B-Q combined bends + 2 quads.

5.4m straight for undulator

1.14 nm.rad

2-1. SR: Electron beam dynamics

Optimization of sextupoles and dynamic aperture

- Target chromaticity (+1, +1)
- Horizontal aperture: -15 mm for stable beam injection
- Vertical aperture: 7 mm larger than IVU min. gap

Touschek lifetime and intrabeam scattering

- Touschek Lifetime of 15 hours
- Small emittance growth by intrabeam scattering

Concept

Concept

Concept

Concept

- Aux. power supply to an individual Q for mag. field adjustment
- Aux. coils for SX as steering magnets and fine tuning of mag. field

Concept

2-1. SR: Mag. field deviation of mass products

Multipoles measured with SSW (single stretched wire)

2-1. SR: Mag. field deviation of mass products

Multipoles measured with SSW (single stretched wire)

B-Q combined measured with 3D Hall-probe

Goal: 20h of gas scattering lifetime for 400 mA current requiring 1×10^{-7} Pa CO equivalent

Features

• Stainless steel (316) chamber with 2 mm thickness and Cu plating inside to meet short gap and to reduce impedance

Goal: 20h of gas scattering lifetime for 400 mA current requiring 1×10^{-7} Pa CO equivalent

Features

- Stainless steel (316) chamber with 2 mm thickness and Cu plating inside to meet short gap and to reduce impedance
- Discretely arranged 10 photon absorbers (AB), 2 crotch ABs (CR), 4 supplemental ABs (SAB) and pumps

Goal: 20h of gas scattering lifetime for 400 mA current requiring 1×10^{-7} Pa CO equivalent

Features

- Stainless steel (316) chamber with 2 mm thickness and Cu plating inside to meet short gap and to reduce impedance
- Discretely arranged 10 photon absorbers (AB), 2 crotch ABs (CR), 4 supplemental ABs (SAB) and pumps

Goal: 20h of gas scattering lifetime for 400 mA current requiring 1×10^{-7} Pa CO equivalent

Features

- Stainless steel (316) chamber with 2 mm thickness and Cu plating inside to meet short gap and to reduce impedance
- Discretely arranged 10 photon absorbers (AB), 2 crotch ABs (CR), 4 supplemental ABs (SAB) and pumps
- Electron beam absorber for the high intensity beam to be spread out during beam abort

AB/CR placed at 17 or 29 mm from beam trajectory.

Horizontally compact vacuum chambers.

- Only 4 types (1 AB, 2 CR, 1 SAB) for low cost and easy maintenance
- Max. SR peak power density of ~200 W/mm²
- Average pressure is 6 × 10⁻⁸ Pa (CO) at 400 mA after 1500 Ah dose → 22hrs. lifetime 16

T. Hiraiwa et al., PRAB 24, 114001 (2021) T. Hiraiwa et al., PRE 102, 032211 (2020)

- Stored electron beam needs to be dumped in a controlled way during beam abort.
- Electron beam absorber installed every cell.

T. Hiraiwa et al., PRAB 24, 114001 (2021) T. Hiraiwa et al., PRE 102, 032211 (2020)

- Stored electron beam needs to be dumped in a controlled way during beam abort.
- Electron beam absorber installed every cell.
- A vertical beam shaker to decrease the vertical beam density by 300.

- Stored electron beam needs to be dumped in a controlled way during beam abort. ٠
- Electron beam absorber installed every cell.
- A vertical beam shaker to decrease the vertical beam density by 300.
- Graphite beam absorbers, the surface of which sticks out by 5 mm from the inside of the vacuum chambers, are installed where dispersion function is maximum and the ring tunnel wall is most distant from the chambers.

T. Hiraiwa et al., PRAB 24, 114001 (2021) T. Hiraiwa et al., PRE 102, 032211 (2020)

- Stored electron beam needs to be dumped in a controlled way during beam abort.
- Electron beam absorber installed every cell.
- A vertical beam shaker to decrease the vertical beam density by 300.
- Graphite beam absorbers, the surface of which sticks out by 5 mm from the inside of the vacuum chambers, are installed where dispersion function is maximum and the ring tunnel wall is most distant from the chambers.

T. Hiraiwa et al., PRAB 24, 114001 (2021) T. Hiraiwa et al., PRE 102, 032211 (2020)

17

2-1. SR: RF

- *R&D of a new TM020 RF cavity with built in higher order mode (HOM) absorbers compact along trajectory*
- Installation of 4 cavities in a straight for 3.6MV acceleration required for 15 hrs Touschek lifetime for 400 mA
- 500 kW RF power to store 400 mA due to maximum radiation loss 1.26 MeV/turn (0.62 MeV for bend)

Parameter	Specification
Beam revolution frequency	859.4 kHz
RF frequency	508.759 MHz
Energy loss	1.26 MeV/turn
	(0.62 MeV for bend, 0.64 MeV for ID)
RF cavity voltage	3.6 MV (0.9 MV per cavity)
Synchronous phase	<i>160 - 170</i> °
Synchrotron frequency	6.0 kHz
Heat dissipation at cavity	120 kW per cavity
Input RF power	245 kW per cavity max.

2-1. SR: TM020-mode cavity

Features

- Along nodes of the TM020-mode magnetic field inside the cavity, slots and ferrite dampers are installed.
- HOM entering the slots are dissipated on the ferrite dampers
- Shunt impedance of 6.8 M , 120 kW for 0.9 MV acceleration per cavity, unloaded Q of 60,300

2-1. SR: TM020-mode cavity

Features

- Along nodes of the TM020-mode magnetic field inside the cavity, slots and ferrite dampers are installed.
- HOM entering the slots are dissipated on the ferrite dampers
- Shunt impedance of 6.8 M , 120 kW for 0.9 MV acceleration per cavity, unloaded Q of 60,300

2-1. SR: TM020-mode cavity

Features

- Along nodes of the TM020-mode magnetic field inside the cavity, slots and ferrite dampers are installed.
- HOM entering the slots are dissipated on the ferrite dampers
- Shunt impedance of 6.8 M , 120 kW for 0.9 MV acceleration per cavity, unloaded Q of 60,300

Status

• Reached 120 kW with 12 HOM absorbers with vacuum of 1.5 imes 10⁻⁶ Pa $_{
m Dur}^{
m 300}$

S. Takano et al., Proc. of IPAC2019, p2318, WEPMP009, (2019)

Concept

• In-vacuum windowless off-axis injection system from the ring inside for stable and transparent injection

S. Takano et al., Proc. of IPAC2019, p2318, WEPMP009, (2019)

- In-vacuum windowless off-axis injection system from the ring inside for stable and transparent injection
- *R&D of an in-vacuum pulse septum and a pair of twin-kickers having identical magnet characteristics*

S. Takano et al., Proc. of IPAC2019, p2318, WEPMP009, (2019)

20

- In-vacuum windowless off-axis injection system from the ring inside for stable and transparent injection
- R&D of an in-vacuum pulse septum and a pair of twin-kickers having identical magnet characteristics
- Injected beam amplitude of 7.5 mm thanks to thin septum wall
- Stored beam oscillation amplitude < 10 m by identical kickers

S. Takano et al., Proc. of IPAC2019, p2318, WEPMP009, (2019)

- In-vacuum windowless off-axis injection system from the ring inside for stable and transparent injection
- R&D of an in-vacuum pulse septum and a pair of twin-kickers having identical magnet characteristics
- Injected beam amplitude of 7.5 mm thanks to thin septum wall
- Stored beam oscillation amplitude < 10 m by identical kickers

- Twin kickers driven by a single pulser for identical kicker magnetic pulses
- Solid state pulser with precise charging circuit and fast IGBT switching

Kicker magnet parameters

Parameter	value
Pole gap	28mm
Pole length	236mm
Integrated flux density	0.066Tm
Coil turn number	2Turn/Pole
Peak current	1600A
Pulse waveform	Half sine
Pulse width	Зµѕес
Peakvoltage	22.2kV

K. Fukami et al., Rev. Sci. Instrum. 93, 023301 (2022) T. Inagaki et al., Proc. of IPAC2018, p1804, (2018)

- Twin kickers driven by a single pulser for identical kicker magnetic pulses
- Solid state pulser with precise charging circuit and fast IGBT switching
- Kickers with identical magnetic properties, e.g., inductance

Kicker magnet parameters

Parameter	value
Pole gap	28mm
Pole length	236mm
Integrated flux density	0.066Tm
Coil turn number	2Turn/Pole
Peak current	1600A
Pulse waveform	Half sine
Pulse width	Зµѕес
Peakvoltage	22.2kV

K. Fukami et al., Rev. Sci. Instrum. 93, 023301 (2022) T. Inagaki et al., Proc. of IPAC2018, p1804, (2018)

Inductances of twin kickers

- Twin kickers driven by a single pulser for identical kicker magnetic pulses
- Solid state pulser with precise charging circuit and fast IGBT switching
- Kickers with identical magnetic properties, e.g., inductance
- Twin magnetic fields identical within 0.1 % accuracy satisfy specification.

Kicker magnet parameters

Parameter	value
Pole gap	28mm
Pole length	236mm
Integrated flux density	0.066Tm
Coil turn number	2Turn/Pole
Peak current	1600A
Pulse waveform	Half sine
Pulse width	Зµѕес
Peakvoltage	22.2kV

K. Fukami et al., Rev. Sci. Instrum. 93, 023301 (2022) T. Inagaki et al., Proc. of IPAC2018, p1804, (2018)

Inductances of twin kickers

Magnetic fields of twin kickers

- Twin kickers driven by a single pulser for identical kicker magnetic pulses
- Solid state pulser with precise charging circuit and fast IGBT switching
- Kickers with identical magnetic properties, e.g., inductance
- Twin magnetic fields identical within 0.1 % accuracy satisfy specification.
- Ceramic vacuum chambers with uniform Ti (3 m) coating

Kicker magnet parameters value Parameter Pole gap 28mm **Pole length** 236mm Integrated flux density 0.066Tm Coil turn number 2Turn/Pole Peak current 1600A Pulse waveform Half sine Pulse width 3µsec Peak voltage 22.2kV

K. Fukami et al., Rev. Sci. Instrum. 93, 023301 (2022) T. Inagaki et al., Proc. of IPAC2018, p1804, (2018)

Inductances of twin kickers

Magnetic fields of twin kickers

• Thin septum wall of 0.5 mm thickness for small injected beam oscillation amplitude

In-vacuum pulse septum parameters

Parameters	Spec.
B [T]	1.4
Magnet length [m]	0.5
Magnet gap [mm]	2
Peak current [kA]	2.3
Coil turn number	1
Pulse width [µsec]	10 (Half-sine)
Septum thickness [mm]	0.5
Magnetic shield thickness [mm]	<0.5
Stray field integral [T.m]	<10 ⁻⁵
Pressure [Pa]	<10-7

- Thin septum wall of 0.5 mm thickness for small injected beam oscillation amplitude
- Narrow magnet gap of 2 mm for 1.4 T mag. field uniformly along horizontal axis

In-vacuum pulse septum parameters

Parameters	Spec.
B [T]	1.4
Magnet length [m]	0.5
Magnet gap [mm]	2
Peak current [kA]	2.3
Coil turn number	1
Pulse width [µsec]	10 (Half-sine)
Septum thickness [mm]	0.5
Magnetic shield thickness [mm]	<0.5
Stray field integral [T.m]	<10 ⁻⁵
Pressure [Pa]	<10-7

- Thin septum wall of 0.5 mm thickness for small injected beam oscillation amplitude
- Narrow magnet gap of 2 mm for 1.4 T mag. field uniformly along horizontal axis
- Stray field outside of the septum suppressed down to <10⁻⁵ Tm with permalloy shield

In-vacuum pulse septum parameters

Parameters	Spec.
B [T]	1.4
Magnet length [m]	0.5
Magnet gap [mm]	2
Peak current [kA]	2.3
Coil turn number	1
Pulse width [µsec]	10 (Half-sine)
Septum thickness [mm]	0.5
Magnetic shield thickness [mm]	<0.5
Stray field integral [T.m]	<10 ⁻⁵
Pressure [Pa]	<10-7

- Thin septum wall of 0.5 mm thickness for small injected beam oscillation amplitude
- Narrow magnet gap of 2 mm for 1.4 T mag. field uniformly along horizontal axis
- Stray field outside of the septum suppressed down to <10⁻⁵ Tm with permalloy shield
- Vacuum pressure < 3x10⁻⁸ Pa
- Flat pulse septum field < ±0.2%

In-vacuum pulse septum parameters

Parameters	Spec.
B [T]	1.4
Magnet length [m]	0.5
Magnet gap [mm]	2
Peak current [kA]	2.3
Coil turn number	1
Pulse width [µsec]	10 (Half-sine)
Septum thickness [mm]	0.5
Magnetic shield thickness [mm]	<0.5
Stray field integral [T.m]	<10 ⁻⁵
Pressure [Pa]	<10-7

Pulse septum field

2-2. Injector linac

T. Asaka et al., PRAB 23, 063401 (2020) T. Asaka et al., JJAP 60, 017001 (2020)

Features

- C-band disk loaded accelerating cavity (42MV/m) modified from the original choke mode type at SACLA
- R&D of a new thermionic cathode gun system for low cost and high reliability
- Future extension to SXFEL

Parameters		Injector	SX-FEL
Beam energy	E (GeV)	3	
Normalized emittance	(<i>m</i> mrad)	<10	2 (1)
Emittance at 3 GeV	(nmrad)	<1.7	
Bunch charge	(nC)	0.3	
Repetition rate (Normal)	(Hz)	1	10

For SX-FEL, the same thermionic cathode gun and an additional bunch compressor will be used.

3. Schedule

Designed by 2019 Production started in 2020 Some of components are under installation Beam commissioning in 2023 User operation in2024

3. Status: On site alignment

- All the magnets assembled on the girders in the factory
- Precise alignment for girder at on-site experimental hall

3. Status: On site alignment

Target magnets	Alignment technique	Accuracy	
On-girder multipole magnets	VWM (Vibrating Wire Method)	< ±50	т
Between girders and bends	Laser tracker	< ±90	т

- All the magnets assembled on the girders in the factory
- Precise alignment for girder at on-site experimental hall

K. Fukami et al., Rev. Sci. Instrum. 90, 054703 (2019)

- 3. Status: On site alignment
- 4 temp.-controlled booths for VWM alignment

Target magnets	Alignment technique	Accuracy
On-girder multipole magnets	VWM (Vibrating Wire Method)	< ±50 m
Between girders and bends	Laser tracker	<±90 m

K. Fukami et al., Rev. Sci. Instrum. 90, 054703 (2019)

- 3. Status: On site alignment
- 4 temp.-controlled booths for VWM alignment

Target magnets	Alignment technique	Accuracy	
On-girder multipole magnets	VWM (Vibrating Wire Method)	< ±50 m	
Between girders and bends	Laser tracker	$< \pm 90 m$	

K. Fukami et al., Rev. Sci. Instrum. 90, 054703 (2019)

3. Status: SR-mag. Installation

• Alignments of 6 girders in a week

3. Status: SR-mag. Installation

- Alignments of 6 girders in a week
- Transport of girder from stock area to tunnel

3. Status: SR-mag. Installation

- Flat floor surface made of epoxy resin by self-leveling (<50 m/m)
- No shim plate between pillar and floor
- Suppressed vibration transfer from floor to girder
- Radiation hardness verified up to 1 MGy

3. Status: Linac acc. installation

- SLEDs and modulators under installation at klystron gallery.
- C-band cavities are under installation at linac tunnel.

3. Status: Linac acc. installation

- SLEDs and modulators under installation at klystron gallery.
- C-band cavities are under installation at linac tunnel.

3. Status: Linac acc. installation

- SLEDs and modulators under installation at klystron gallery.
- C-band cavities are under installation at linac tunnel.

4. Summary

- A new 3GeV light source is on-going in north-east Japan.
- Hardware production and installation are under progress.
- Beam commissioning will start by the middle of 2023.
- User operation is scheduled to start in FY2024.

4. Summary

- A new 3GeV light source is on-going in north-east Japan.
- Hardware production and installation are under progress.
- Beam commissioning will start by the middle of 2023.
- User operation is scheduled to start in FY2024.

Thank you for your attention!

天岩戸神話の天照大御神 (<u>春斎年昌</u>画、1887年)

AmaTerasu