

IPAC'22, Bangkok, Tailand, June 12-17, 2022

High intensity ion beam accelerator facilities HIAF and CiADS status and demonstration of key technologies

Hongwei Zhao On behalf of HIAF&CiADS team

Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou, China

OUTLINE

Brief introduction and construction status of HIAF & CiADS

Key technology R&D and demonstration

1. High-intensity highly-charged heavy ion beam production

- 2. Fast ramping power supply with full energy storage
- 3. Magnetic alloy core loaded RF system

4. 17-20 MeV/CW 5-10 mA front-end demo-facility of proton SC linac for CiADS

Summary and conclusion

– for HIAF

HIAF&CiADS brief introduction

- HIAF: High Intensity heavy ion Accelerator Facility
- CiADS: China Initiative Accelerator Driven System
- Being built by IMP in Huizhou of Guangdong Prov.
- HIAF: Nuclear physics research
 Total budget: 2.8 B CNX X (424 M USD ©)
- Total budget: 2.8 B CNY ¥ (424 M USD \$)
- Schedule: 2018-2025
- Construction started officially Dec. 2018

- Two of 16 large-scale scientific infrastructure facilities approved by China Government during the 12th 5-year-plan 2016-2020
- CiADS: Nuclear waste transmutation
- **Total budget:** 4.0 B CNY ¥ (606 M USD \$)
- **Schedule:** 2021-2027
- Construction started officially July. 2021

HIAF layout and parameters

External target station

HIAF key parameters

	SECR	iLinac	BRing	HFRS	SRing
Energy	0.014	17	835	800	800
(MeV/u)	(U ³⁵⁺)	(U^{35+})	(U ³⁵⁺)	(U^{92+})	(U^{92+})
Intensity	50 pμA (U ³⁵⁺)	28 pμA (U ³⁵⁺)	2×10 ¹¹ ppp (U ³⁵⁺)		10 ¹⁰ ppp (U ⁹²⁺)
Operation mode	DC	CW or pulse	fast ramping 12T/s 3Hz	Momentum -resolution 1100	DC, deceleration
Emittance or Acceptance π·mm·mrad dp/p		5 / 5	200/100 0.5%	±30/±15 ±2%	40/40 1.5%

iLinac: Superconducting linac injector

- > High-intensity highly-charged heavy ion beam production and acceleration
- Two-phase painting injection to increase BRing injection efficiency and overcome space charge limit
- Fast ramping rate (12T/s) of BRing magnets to mitigate ionization beam loss and dynamic vacuum effect

Key technology R&D and Prototyping

- 28 GHz SECRAL-II and 45 GHz FECR ECR ion sources
- **Fast ramping power supply with full energy-storage technology for BRing dipole magnet**
- Magnetic alloy core loaded RF system

CiADS site

Equipment test building No.2

HIAF operation building No.2

1# Cryogenic center

Office building No.1

Office building No.2

Cooling water building

Electric-power transformer station

Equipment test building No.1

HIAF civil construction status

HIAF components fabrication

Most of the components are in mass production

BRing dipole magnets

Components of HFRS superconducting magnets

iLinac HWR015 cavities

Components of SRing electron cooler

BRing collimator

HIAF planed milestones and time schedule

2019	2020	2021	20	22	2023 2024			2025	
Civil construction									
		Electric p network	Electric power, cooling water, compressed air, network, cryogenic, supporting system, etc.						
ECR design & fabrication SECR i and com				tion ning				Darr	
	iLinac de	sign and fabr	iL	inac installatio commissioni	on and ng		One One		
Prototypes of PS, RF cavity, chamber, magnets, etc.			fabric	cation	BRing in comm		exp.		
					HFRS & SRing installati		on &		
					com				
			Terminals installation						

- > The first ion beam provided by **SECR** in the end of 2022;
- > The first ion beam from iLinac in the end of 2024;
- > The first ion beam injected, accelerated and extracted from **BRing** in May 2025

Т4

T2

CiADS layout and parameters

CiADS could be the world first MW-level ADS facility

- **T1: Fast reactor, LBE target** Demonstrate high power ADS and transmutation
- **T2:** Target exp., liquid metal and granular target

MA

- T3: material irradiation and full power dump
- T4: low power dump 50 kW

CiADS key parameters

T3

CiADS key pa	rar	50 Solution meters	0 MeV/CW	5 mA p
Thermal Power (Reactor + Bea	am)	10 MW		of of on se
Pronton beam Energy (MeV)	500		C line
Beam density (mA)		5		I de
Operation modes		CW / Pulse		
Target Max. power (MW)		<= 2.5		
Target material		LBE		
Reactor Keff	~	0.75 / ~ 0.96]	
Reactor thermal power	~	- 7.5 / ~9.76	1	

Physics design of CiADS proton linac

TRAP

Parameters of the SRF cavities

	HWR010	HWR019	HWR040	Ellip062	Ellip082
Freq. (MHz)	162.5	162.5	325	650	650
Quantity	9	24	60	30	28
Dyna. load @ 2K	2.9	4.4	5.7	23	25
Ep @ op. (MV/m)	26	28	28	29	29
Ep @ cp. (MV/m)	31	32	31	31	32

Beam envelope along the linac

- Minimize the beam loss and maintain a long-term high reliability and availability of the high power proton SC linac (500 MeV/5mA)
- **>** High power spallation target (2.5 MW). Phase I: LBE target; Phase II: Granular flow target
- > Coupling between the reactor, the target and the high power proton beam

Key technology R&D and Prototyping

- 17-20 MeV/CW 5-10 mA front-end demo-facility of CiADS linac for reliability demo.
- Target prototype R&D (LBE target and granular flow target)
- Prototyping for fast subcritical reactor vessel, heat exchanger and LBE centrifugal Pump

CiADS civil construction status

CiADS facility in prototyping and engineering design

Ellip082

Ellip062

650 MHz SSAMP @ 150 kW

SRF cavities

Target Prototype

CiADS planed milestones and time schedule

HIAF & CIADS brief introduction and construction status

Key technology R&D and demonstration

- 1. High-intensity highly-charged heavy ion beam production
- 2. Fast ramping power supply with full energy storage
- 3. Magnetic alloy core loaded RF system
- 4. 17-20 MeV/CW 5-10 mA front-end demo-facility of proton SC linac

Summary and conclusion

High-intensity highly-charged heavy ion beam production by SECRAL II

Ion Beam	SECRAL (eµA)	
¹⁶ O ⁶⁺	6700	
40Ar ¹²⁺	1420	y (euA)
40Ar ¹⁶⁺	620	Intensit
40Ar ¹⁸⁺	15	Beam
⁴⁰ Ca ¹¹⁺	710	Kr ²⁶⁺
⁷⁸ Kr ¹⁸⁺	1030	3
⁷⁸ Kr ²⁸⁺	146	
Xe ²⁶⁺	1100	
Xe ³⁰⁺	365	
Xe ⁴²⁺	16	
²⁰⁹ Bi ³¹⁺	680	
²⁰⁹ Bi ⁴¹⁺	100	
²⁰⁹ Bi ⁵⁰⁺	10	
²³⁸ U ³³⁺	450	
²³⁸ U ³⁵⁺	315 —	

The world first 4th generation ECR ion source FECR

45 GHz Microwave Coupling

FECR key parameters

Microwave	45 GHz/20 kW
Magnet conductor	Nb ₃ Sn
Axial fields (T)	6.5/1.0/3.5
Sextupole field (T)	3.8@r=75 mm
Maximum field (T)	11.8 T
Maximum stress (MPa)	150
Magnet bore (mm)	>Ø160
Stored energy (MJ)	1.6
Extraction (kV)	50
Typical beam	1.0 emA U ³⁵⁺

 Beams and intensities expected from FECR

- 3-5 times higher than the existing record beam intensities

¹²⁹ Xe ³⁰⁺	>1000 µA
¹²⁹ Xe ⁴⁵⁺	> 50 µA
²⁰⁹ Bi ³¹⁺	>1000 µA
²⁰⁹ Bi ⁵⁵⁺	> 50 µA
²³⁸ U ³⁵⁺	>1000 µA
²³⁸ U ⁴¹⁺	> 200 µA
²³⁸ U ⁵⁶⁺	> 30 µA

FECR Nb₃Sn magnet

1/2 Prototype of FECR Nb₃Sn magnet

• Manufacturing and 8 times energizing tests of the $\frac{1}{2}$ prototype Nb₃Sn magnet took more than 5 years

- The sextupole quenched at 70%-90%, sextupole+one solenoid reached 77% design current
- 2 of the 6 sextupole coils turned out to have performance degradation or minor damage
- Learned a lot of lessons and experiences, manufacturing, assembling, quench protection, flux jump,

FECR full-scale Nb₃Sn magnet status

Almost ready for cooling down and energizing But need to verify the quench protection system carefully

The magnet was manufactured and assembled by collaboration with XSMT company in Xi-an

- To reduce beam loss , 12 T/s ramping rate is required for the HIAF BRing dipole magnets.
- Challenge for the dipole power supply: High peak power, very fast ramping rate (38000 A/s), high tracking precision, very low current ripple and voltage fluctuation.

			I — lout	15MW		- 6000	
Excitation current/voltage	3900A/3600 V	4000 -	Vout	4227V	< 3900A		- 1.5x10'
	<u>3 Hz</u>			17	\mathbf{X}	- 4000	- 1.0x10 ⁷
load inductance	116 mH	3000 -	-	1/1	\mathbf{h}	- 2000	- 5.0×10 ⁶
Load Resistance	36.4 mΩ	t(A)	17	11	\backslash	S I	5.000
Current changing rate	±38000 A/s	ua 2000 -	170-	149.8V		oltage	- 0.0
Flat top/bottom error	≤±0.2 A	1000 -		/	X /	2000 >	5.0x10 ⁶
	≤ 5.1x10 ⁻⁵		444A			-4000	-1.0x10 ⁷
tracking error	≤±0.2 A	0 -		-15MW	A.		1
	≤ 5.1x10 ⁻⁵		<u> </u>			6000	-1.5x10 [°]
		-0.	.05 0.00 0.05	0.10 0.15 0.	20 0.25 0.30	0.35	
				Time(s)			

A innovative power supply topology and technology proposed for HIAF BRing dipole magnets

Variable forward excitation; full energy storage technology; high-power-pulse technology with FPGA-based full-digital controllers.

Prototype of fast ramping power supply with full energy storage

A prototype power supply with full current and power has been developed. The key technologies and the innovative design with variable forward excitation and full energy storage technology at high-power pulse have been verified.

The prototype power supply was tested successfully with 4 real BRing dipole magnets connected in series Achieved results: maximum current 4000 A/3600 V, ramping rate 38000 A/s repetition rate 3 Hz, tracking error ±9.62x10⁻⁵

Magnetic alloy core loaded RF system for HIAF BRing

■ RF system of HIAF BRing: high RF voltage 240 kV and short rise time ≤10µs for beam compression

MA core production line was built through collaboration between IMP and a domestic company

Key technology: 14μm ribbon production, ribbon shearing, 1~2μm insulation silica coating, constant tension horizontal winding, atmosphere annealing and water proof coating

Ribbon shearing

1~2µm silica coating

Constant tension horizontal winding

Atmosphere annealing

Water proof coating

Performance of the magnetic alloy core produced

Independent development of MA core

Over ten years development from small(φ 90), medium (φ 460), to large size (φ 780) MA core.

■ Breakthrough in MA core manufacturing **Q** value: (0.65~0.3) @ (0.1~20MHz) µ'pQf: 5

μ'pQf : 5.3GHz @ 0.3MHz

Oil-cooling MA core loaded cavity and RF system manufactured

MA RF system

Two-TH558-tube amplifier cabinet

RF power test was carried out: Gap voltage/one cavity <u>50kV@0.3~2.1MHz</u> The third harmonic suppression better than 25 dB

Cavity pick-up voltage

Voltage of ramping mode

17-20 MeV/5-10 mA front-end demo facility for CiADS linac

High power CW SC proton linac reliability demonstration

• Operation from Jan. 20 to Mar. 10, 2021 The world first demonstration

Availability: 126.1 kW, op. time 108 hs, availability 93.6% Beam current: 174.4 kW, 10.08 mA, op. time 12 hs High power: 20.18 MeV, 10.18 mA, beam power 205.5 kW

RAMI analysis for the continuous operation test

HIAF and CiADS facilities being built in Huizhou by IMP.

- Most of HIAF components in mass production and civil construction completed 50%. The first beam commissioning of iLinac and BRing planed in 2024-2025.
- CiADS in key technology R&D and facility engineering design. The first beam commissioning of CiADS linac is planed in June 2025.

■ Key technology R&D and demonstration for HIAF&CiADS, achieved a good progress.

- A lot of record beam intensities for highly charged heavy ions were produced by SECRAL II.
 45 GHz FECR Nb₃Sn magnet almost ready for cryogenic energizing after 7 years development.
- Fast ramping power supply with full energy storage successfully developed for HIAF BRing dipole magnet, reached 4000 A/3600 V, ramping rate 38000 A/s, 3Hz.
- Large size and high performance MA core was developed successfully. Oil-cooling MA core loaded cavity and RF system were manufactured and tested, reached designed performance.
- Reliability and availability at 17 MeV/CW 7.5 mA for 108 hours and 17 MeV/CW 10 mA for 12 hours continuously operation were demonstrated for the first time for a proton SC linac, as a low energy demofacility for CiADS.

Thanks Jiangcheng Yang, Yuan He and Liangting Sun for preparing a few slides !

Thanks HIAF and CiADS teams for hard working and achieving good progress !

Thanks a lot all those experts and colleagues from the domestic and international Labs for your help, collaborations and fruitful discussions !

Thank you for your attention !