Experiments towards high-repetition-rate plasma-wakefield acceleration

First experimental results on fundamental repetition rate limits at FLASHForward

<u>Gregor Loisch</u>, J. Beinortaite, G. Boyle, J. Chappell, S. Diederichs, J. Garland, C. A. Lindstrøm, T. Parikh, S. Schreiber, S. Schröder, M. Thévenet, S. Wesch, M. Wing, P. Gonzalez-Caminal, B. Foster, J. Osterhoff, R. D'Arcy

IPAC 2022 Bangkok, 13.06.2022

IELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Accelerators – an enabling technology...

...with limits

- Accelerators are a story of success
 - Enabled the establishment of standard model, …
 - Key tools in High-energy physics, Life sciences, Material sciences, Medical treatment, …
 - Supporting increasing number of industrial applications
- Radiofrequency cavities core technology of current machines
- Accelerating gradient in metal cavities limited
 - \rightarrow Large scale facilities
 - \rightarrow Future linear colliders 10's of km size

 \rightarrow Can we advance accelerators beyond current limits?

E. Adli, Phil. Trans. R. Soc. 377, 20180419, 2019

Plasma-wakefield acceleration (PWFA)

General introduction and state of the art

- Excitation of electron density oscillation in plasma by a particle bunch
- Charge separation \rightarrow electrical fields
- Trailing bunch gains energy in wakefields

- Energy spread preservation demonstrated
- Experiments towards emittance preservation ongoing

Applications and high repetition rates

Experimental demands in HEP and photon science

- Two main fields of application for PWFA
 - High-energy physics machines
 - Soft/hard X-ray free-electron lasers
- → luminosity and (int.) brightness require high average power, i.e., many bunches/sec
- Various bunch patterns used in conventional machines
 - < ~100Hz CW (LCLS I, SwissFEL, SACLA, PAL FEL, ...)
 - MHz burst @ 5-10 Hz (Eu XFEL, FLASH, ILC)
 - **GHz bursts @ 50 Hz** (CLIC)
 - *MHz CW* (LCLS II, Eu XFEL)

→ Advance PWFA from $O(Hz) \rightarrow O(kHz / MHz)$!?

Fundamental limits for high-repetition-rate PWFA

Identifying possible operation modes

- Various constraints yet unknown
 - **Example :** Reset of plasma source \rightarrow Train repetition rate
 - ► Plasma stability / heat accumulation / heat load on plasma source → Bunch train length
 - ► Plasma recovery → Fastest repetition rate
- Electron redistribution to equilibrium ~few 1/ω_{pe}
- Plasma-ion & electron redistribution?
- Ion motion measured
 - \rightarrow how long is plasma affected?

Plasma recovery experiment at FLASHForward

Probing perturbed plasma time evolution

- 2 independent bunches from linac
 - 1st bunch directly to plasma
 - 2nd bunch collimated into driver/trailing pair
 - ► Separation tunable in 0.77 ns steps (\rightarrow <800 µs)
- 1st bunch drives wake / perturbs plasma
- 2nd bunch pair probes evolution
- Can vary exp. conditions
 - Gas species
 - Plasma density
 - Bunch charge/current

R. D'Arcy *et al.*, Nature **603**, 58-62, 2022

Plasma recovery time

First measurement of evolution time of plasma perturbation

Energy (MeV)

(mm) x

- Compare perturbed& unperturbed cases
 - Compensate plasma density evolution
- Observed evolution of
 - Trailing probe bunch energy
 - Trailing probe bunch transverse size
- Measured recovery time of 63 ns
 - Argon plasma
 - Initial density 1.75 x 10¹⁶ cm⁻³
 - 1.5 kA bunch perturbing plasma

Bunch separation (ns)

Modeling of plasma recovery

Understanding the measured beam evolution

- Deduce transverse plasma properties from
 - ► Probe witness beam energy gain (→ on-axis density)
 - ► Focal lines of beam (→ transverse density curvature)
- Measurements reproduced well in simulation
- Plasma channel w/ shape evolving over 63 ns

Nature 603, 58-62, 2022

Plasma recovery in the bigger context

Next hurdles towards high average power PWFA

- Measured recovery time allows repetition rate of O(10 MHz)
 - \rightarrow O(1 MHz) operation mode of various machines
- Various physics issues to tackle
 - Further understanding of dependencies of recovery
 - Supply of similar plasma media at MHz
 - Source technology?
 - Containment of plasma/gas?
 - Target PWFA efficiency ~50%
 - \rightarrow manage/remove excess heat from plasma source

J.M. Garland *et al.*, Rev. Sci. Instrum. **92** 013505 (2021)

FLASHForward roadmap

Path towards demonstration of a ready-to-use PWFA stage

Summary & Outlook

Status and prospects

- First measurement of fundamental repetition rate limit in a PWFA
 → Repetition rates of O(10 MHz) in principle possible
- FLASH provides ideal conditions for these studies
- **Further studies** on repetition rate limiting effects commencing
 - Parameter dependencies of ion motion limits
 - Bunch train stability
 - Plasma sources
 - Beam induced effects on longer time scales
- FLASHForward now in full motion towards high-average-power PWFA!

Summary & Outlook

Status and prospects

- First measurement of fundamental repetition rate limit in a PWFA
 → Repetition rates of O(10 MHz) in principle possible
- FLASH provides ideal conditions for these studies
- **Further studies** on repetition rate limiting effects commencing
 - Parameter dependencies of ion motion limits
 - Bunch train stability
 - Plasma sources
 - Beam induced effects on longer time scales
- FLASHForward now in full motion towards high-average-power PWFA!

Thank you for your attention!

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Gregor Loisch Kicker & Septa Laboratory Machine Injection Group MIN gregor.loisch@desy.de Tel. +49 8998 - 4961

Modeling of plasma recovery

Understanding the measured beam evolution

- Deduce transverse plasma properties from
 - Focal lines of beam (\rightarrow transverse density curvature)
 - > Probe witness beam energy gain (\rightarrow on-axis density)
- Very good agreement w/ simulations
- On-axis density spike evolving into "hollow" channel

Nature **603**, 58-62, 2022