

SPS-II: A 4th Generation Synchrotron Light Source in Southeast Asia

Prapaiwan Sunwong

Synchrotron Light Research Institute, Thailand

Siam Photon Source - I

(LBT)

Siam Photon Source - I

Time to go Forward

Siam Photon Source - II (SPS-II)

Insertion device

SPS-II Main Components

- 1. Electron gun
- 2. 150 MeV linear accelerator
- 3. 3.0 GeV booster synchrotron (Circumference 304.8 m)
- 4. Low and high energy transfer line
- 5. 3.0 GeV storage ring (Circumference 327.5 m)
- 6. Beamlines
 - 21 Insertion Device (ID) beamlines
 - 2 infrared beamlines
 - 2 diagnostic beamlines

SECTION A-A SCALE 1 : 200

Machine Parameters

Parameters	SPS	SPS-II
Circumference (m)	81.3	327.5
Energy (GeV)	1.2	3.0
Relativistic factor γ	2348.34	5870.85
Emittance ε _{x0} (nm·rad)	41.0	0.96
Beam current (mA)	150	300
Nat. energy spread σ _E (%)	0.066	0.077
Nat. chromaticity ξ_x/ξ_y	-8.7/-6.4	-65.6/-76.7
Tune Q _x / Q _v	4.75/ 2.82	34.24/12.31
Momentum compaction α_c	1.70e-2	3.33e-4
Damping times hor./ver./long. (ms)	10.7/9.8/4.7	9.7/11.3/6.2
Straight/circumference	0.33	0.35
Energy loss per turn U ₀ (MeV)	0.066	0.577
RF frequency (MHz)	118.00	119.00
RF voltage (MV)	0.3	1.5
Harmonic number	32	130
Overvoltage V/U ₀	4.5	2.6
Synchronous phase (degree)	167.29	157.34
Synchrotron tune	0.00460	0.00178
Nat. bunch length (mm)	29.03	7.48
Nat. bunch duration (ps)	96.8	24.9

Larger ring -> More Beamlines

Higher beam energy -> Higher photon energy

Lower emittance
Higher current
-> Higher flux, brightness

SPS-II Storage Ring

Design concept:

- ✓ Performance --> MBA cell, low emittance (<1nmrad)</p>
- ✓ Feasibility --> Moderate magnets requirement
- ✓ Productivity --> Space usage (>35%)

DTBA (Double Triple Bend Achromat) originated from Diamond Light Source upgrade study

14 Cells -> 28 straights in total

SPS-II Booster Synchrotron

Concentric booster

- low emittance for providing a clean injection into the storage ring
- Minimize the building construction cost (substantial saving of building space and shielding)
- Minimize magnet manufacturing cost (small lattice elements, low power consumption)
- Simple transfer line between booster and ring

FODO with combined function magnets

8 Cells in total

Design considerations:

- Target beam energy of 150 MeV
- Total linac length < 25 m
- Compatible with 119-MHz RF system of booster and storage ring

Proposed Components:

- Triode gun with 119-MHz voltage modulation at the grid level to produce a chopped beam
- Subharmonic pre-buncher operating at 476 MHz
- S-band buncher operating at 2856 MHz
- S-band accelerating structures

Parameter	Value
Beam energy	150 MeV
Normalized emittance	≤ 50 mm·mrad
RMS energy spread	≤ 0.5 %
Bunch train charge (MBM)	> 6 nC
Bunch charge (SBM)	≥ 1.5 nC
Bunch train duration (MBM)	150-600 ns
Bunch duration (SBM)	< 1 ns
Repetition rate range	1-5 Hz
Nominal repetition rate	2 Hz

RF System

Frequency 119 MHz

- Require less RF voltage for a high RF acceptance
- Low power consumption to get required cavity voltage
- Low sampling rate of LLRF makes the simple LLRF
- Use coaxial rigid line instead of waveguide for RF distribution
- Need Landau cavity for bunch lengthening

Number of cavity		
- Storage ring	5/6	5 cavities for first phase
- Booster ring	4	
Total RF voltage		
- Storage ring	1.5/1.8 MV	RF acceptance > 4.2%
- Booster ring	1.2 MV	RF acceptance > 1.5%
RF power transmitter		Solid state technology
- Storage ring	135 kW/cavity	
- Booster ring	60 kW/cavity	
LLRF control unit		FPGA base
- Storage ring	3	2 for main RF cavity 1 for Landau cavity
- Booster ring	1	

Magnet System

- Moderate requirements
- Offset quadrupole design (ESRF) for combined dipole-quadrupole magnet
- Manufacturing tolerance ± 0.02 mm
- Static deformation of magnet structure < 0.005 mm
- Pulsed multipole magnet (nonlinear kicker) for injection into storage ring
- Magnets for storage ring (solid steel) and booster synchrotron (laminated steel) to be manufactured in Thailand
- Pulsed magnets (septum, kicker) to be purchased as a turnkey system

Half-cell of SPS-II storage ring DTBA lattice

Booster Magnets	Magnetic field	Gap/Bore diameter (mm)	Turn number	Operating current (A)
BD	1.048 T, 3 T/m, 21 T/m ²	30	12	1,071
QF	20 T/m, 64 T/m ²	46	26	173
QD	5 T/m	50	10	130
SF, SD	750 T/m ²	44	8	135

Transfer Line Magnets	Magnetic field	Effective length (m)	Deflecting angle (°)
LTB-QM	5 T/m	0.075 - 0.150	-
LTB-BM	0.33 T	0.419	16
LTB-SEP	0.16 T	0.800	15
BTS-QM	25 T/m	0.200	-
BTS-BM	1.05 T	1.500	9
BTS-SEP	1.3 T	0.800	6

STR Magnets	Magnetic field	Gap/Bore diameter (mm)	Turn number	Operating current (A)
D01, D02	0.87 T	36	24	530
DQ1	0.6 T, 26 T/m	52	50, 10	145
QF1	45 T/m	32	56	85
QD2, QD3, QD5	51 T/m	32	56	100
QF41, QF42	44 T/m	36	56	113
QF6	60 T/m	32	56	112
QF8	50 T/m	32	56	89
SD1, SF2, SD3	1,800 T/m ²	44	32	84
OF1	72,000 T/m ³	56	15	103

Mechanical Positioning System

Storage Ring Girder

Top plate size	750 x 2,800 mm
Payload (total magnet load)	7 Tons
Levelling adjustment resolution (by motor)	0.004 mm

Assembly

84 STR girders will be assembled and aligned with Magnets in Lab, then transport to STR tunnel for installation.

The magnets will be open for vacuum chamber installation.

Alignment Network

The alignment network is used to provide the precise position for all components.

Required positioning tolerances.

Global tolerance		<u>+</u> 3 mm	
	Girer to Girder tolerance	100 μm (RMS)	

Siam

Vacuum System

- Stainless steel vacuum chamber is chosen due to its excellent strength
- Domestical manufacturing welding technology
- External baking out
- Non-evaporable getter (NEG) cartridges and sputter ion pumps (SIP)

Fabrication tolerances	< 1 mm/m
Taper inclination	< 1/10
The step height	< 1 mm

the beam current up to 500 mA + 20% margin

Prototype Development (2021 – 2023)

Vacuum chambers

Magnets

Girders

IDs	Beamlines	Techniques
EPU64	HRSXS	PES, ARPES, XPS, PEEM, NEXAFS, XMCD
MPW70	TXAS	XANES, EXAFS, XRF
MPW50	HXAS	XANES and QEXAFS, XRF, XES
U20	SWAXS	SAXS, WAXS USAXS, GISAXS
U20	HRXRD	XRD, High Resolution XRD, XRD imaging
MPW50	XMCT	micro-tomography
U20	MX	micro-focused MX MAD and SAD
(BM)	IR	FTIR, IR microspectroscopy / imaging

New Opportunities for Research and Industry

Human development

Eastern Economic Corridor of Innovation (EECi)

Buildings and Facilities

Ring Tunnel

First floor

Machine Instrument Area (MIA)

Second floor Control Instrument Area (CIA)

Siam Photon

Building and Facilities

Summary

- SPS-II project was approved in 2019. The project aims to serve the user community in the region with new opportunities for research and industry.
- The SPS-II design concepts considered the performance, feasibility and productivity. The DTBA lattice was chosen.
- Detailed design of the SPS-II machine and the buildings are completed.
- Prototype of magnets, vacuum chambers and girders for half-cell of the DTBA lattice is currently in progress.
- The SPS-II is planned to open for users in 2029.

