IPAC'22, June 13, 2022

Machine Learning for Online Surrogate Modeling of Beam Dynamics

Auralee Edelen edelen@slac.stanford.edu

with work/examples also from many colleagues, especially: R. Roussel, C. Mayes, C. Emma, S. Miskovich, J. Duris, A. Hanuka, D. Ratner, A. Scheinker, N. Neveu, L. Gupta, A. Adelmann, Y. Huber, M. Frey, E. Cropp, P. Musumeci, A. Mishra

1,062 experiments in 2016

~1023 papers since 2009

Experimenters come for a few days – a week

beam duration, x-ray wavelength etc. adjusted for each experiment

A. Marinelli, et al., Nat. Commun. 6, 6369 (2015) E-Profile (arb.)

> 50 100 150 200 250 t (fs)

100

-50

-100

5,000 (¥)

A E (MeV)

A. Marinelli, IPAC'18

Beam exists in 6-D position-momentum phase space

Have incomplete information: measure 2-D projections or reconstruct based on perturbations of upstream controls

Can have dozens-to-hundreds of controllable variables and hundreds-of-thousands to millions to monitor

Nonlinear, high-dimensional optimization problem

Tuning approaches can leverage different amounts of data/previous knowledge

Use a fast, accurate model ...

find some knobs that give us the beam we want and apply those to the machine

get info about unobserved parts of machine (online model / virtual diagnostic)

do offline planning and control algorithm prototyping

In reality things are much more difficult...

fluctuations/noise (e.g. laser spot)

drift over time

AI/ML is poised to help with speed, accuracy, and adaptability of models

Accelerator simulations that include nonlinear and collective effects are powerful tools, but they can be computationally expensive

ML models can provide fast approximations to simulations

Linac sim in Bmad with collective beam effects

< ms execution speed

10^6 speedup

Accelerator simulations that include nonlinear and collective effects are powerful tools, but they can be computationally expensive

ML models can provide fast approximations to simulations

Linac sim in Bmad with collective beam effects

< ms execution speed

10^6 speedup

Include high-dimensional input information \rightarrow better output predictions

Surrogate-boosted design optimization (example on AWA)

Example Use Case: LCLS Injector Surrogate Models

- Neural networks trained on IMPACT-T sims
- Several versions aimed at different outputs and goals (e.g. 6D phase space projections, scalars along z, interpolation vs. accuracy on known configurations)
- Inputs sampled widely across valid ranges

Example

outputs

- Inputs: laser length + spot size, L0 phases, solenoid strength, SQ/CQ quads, 6 matching quads
- Outputs: emittances, bunch length, spot sizes, covariances, energy

Have been using extensively for algorithm development

e.g. new Bayesian optimization methods, adaptive emittance measurement \rightarrow TUPOST059

Finding Sources of Error Between Simulations and Measurement

Many non-idealities not included in physics simulations: **static error sources** (e.g. magnetic field nonlinearities, physical offsets) **time-varying changes** (e.g. temperature-induced phase calibrations)

Want to identify these to get better understanding of machine → fast-executing ML model allows fast / automatic exploration of possible error sources

calibration transforms injector settings settings laser image laser image longitudinal/ transverse phase space

Here: calibration offset in solenoid strength found automatically with neural network model (trained first in simulation, then calibrated to machine)

Want to have a reliable model confidence metric before using predictions in control/analysis; can also guide model updating

 \rightarrow need uncertainty quantification / robust modeling

Need for decision making under uncertainty (e.g. safe optimization) Prediction uncertainties can be leveraged for online model updating, intelligent sampling

Current approaches

- Ensembles
- Gaussian Processes
- Bayesian NNs
- Quantile Regression

Neural network with quantile regression predicting FEL pulse energy at LCLS

<u>https://github.com/lipigupta/FEL-</u> <u>UQ/blob/main/notebooks/QR--Interp-2.ipynb</u>

Need for decision making under uncertainty (e.g. safe optimization) Prediction uncertainties can be leveraged for online model updating, intelligent sampling

Current approaches

- Ensembles
- Gaussian Processes
- Bayesian NNs
- Quantile Regression

Neural network with quantile regression predicting FEL pulse energy at LCLS

https://github.com/lipigupta/FEL-UQ/blob/main/notebooks/QR--Interp-2.ipynb

A. Mishra et. al., PRAB, 2021

Need for decision making under uncertainty (e.g. safe optimization) Prediction uncertainties can be leveraged for online model updating, intelligent sampling

Time [fs]

A. Mishra et. al., PRAB, 2021

Current approaches

- Ensembles
- Gaussian Processes
- Bayesian NNs
- Quantile Regression

Neural network with quantile regression predicting FEL pulse energy at LCLS

<u>https://github.com/lipigupta/FEL-</u> <u>UQ/blob/main/notebooks/QR--Interp-2.ipynb</u>

Need for decision making under uncertainty (e.g. safe optimization) Prediction uncertainties can be leveraged for online model updating, intelligent sampling

Current approaches

Ensembles

0.2

0.3

0.5

0.6

0.2

0.3

0.4

Ê 0.4

- Gaussian Processes .
- **Bayesian NNs** .
- **Quantile Regression**

Neural network with quantile regression predicting FEL pulse energy at LCLS

https://github.com/lipigupta/FEL-UQ/blob/main/notebooks/QR--Interp-2.ipvnb

Example of beam size prediction and uncertainty estimates under drift from a neural network (@ UCLA Pegasus)

Uncertainty estimate from neural network ensemble does not cover the OOD prediction error, but it does give a qualitative metric for relative uncertainty

Data sets also present a challenge:

- Most examples above used thousands to tens-ofthousands of examples
- Not feasible to gather new data in every configuration (from simulation or measurements)
- Not everyone has access to large compute resources or ample beam time

How can we increase model generalization to new conditions and decrease data set sizes (i.e. improve sample-efficiency)?

 \rightarrow inherent question: how to make ML models more readily adaptable?

"Physics-informed" modeling \rightarrow incorporate physics domain knowledge to reduce need for data, and aid interpretability + generalization

Many approaches:

- Combine physics representations and machine learning models directly (e.g. differentiable simulations)
- Add physics constraints to output metrics
- Force to satisfy expected symmetries (e.g. inductive biases in ML model)
- Loose form: learn from many physics sims in a way that results in good representation of the physics (also related to representation learning)

Review paper: Karniadakis et al, *Nat Rev Phys* **3**, 422–440 (2021) Snowmass accelerator modeling white paper: <u>arXiv:2203.08335</u> Differentiable Taylor map physics model + weights → train like ML model needed very little data to calibrate PETRA IV model

Ivanov et al, PRAB, 2020

Example: Physics-informed Gaussian Processes

J. Duris et al., PRL, 2020 A. Hanuka, et al., PRAB, 2021

 \rightarrow design GP kernel from expected correlations between inputs (e.g. quads)

 \rightarrow take the Hessian of model at expected optimum to get the correlations

Including correlation between inputs enables increases sample-efficiency -> results in faster optimization Kernel-from-Hessian enables easy computation of correlations even in high dimension

Example for photoinjector emittance at AWA → much more efficient sampling than N-D scans

R. Roussel et. al. Nat. Comm. 2021

Explored 10-D input space on FACET-II injector at 700pC bunch charge

- Inputs: solenoid, bucking coil, corrector quads, matching quads
- Constrained on match and emittance
- Data sampling enabled easy model learning

~2 hours for thorough exploration in 10-D contrast with 8-12 hours for 3-D scan

Explored 10-D input space on FACET-II injector at 700pC bunch charge

- Inputs: solenoid, bucking coil, corrector quads, matching quads
- Constrained on match and emittance
- Data sampling enabled easy model learning

Examples from test set of held-out input ranges

Use of Bayesian exploration to generate training data was **sample-efficient**, reduces some of the burden of data cleaning, and results in a **well-balanced distribution for the training data** set over relevant space

 \rightarrow Each area aids creation of generalizable, adaptable accelerator models

Better Model <u>Representations</u>

Physics-informed Modeling

Model Uncertainty Assessment

Robust Modeling / Uncertainty Quantification

Online Model <u>Updating</u>

Efficient Sampling Methods (active learning)

Continual Learning

Adaptive Feedback

Generalizable Learned Representations

Surrogate Models of Different Granularities

sub-section models (e.g. injector) machine-wide models

general modular components

multi-particle tracking steps

Embedding surrogates in tracking calculations

Impact of Coherent Synchrotron Radiation (CSR) is computationally intensive to simulate, even for ID

Replace wakefield calculation in tracking step with a neural network

Trained fully-connected, feedforward network

Trained on >1M samples from 10k different initial beam distributions (generated from start-to-end LCLS sims with random linac settings)

Embedding surrogates in tracking calculations

Impact of Coherent Synchrotron Radiation (CSR) is computationally intensive to simulate, even for ID

Replace wakefield calculation in tracking step with a neural network

- \rightarrow not perfect, but gets the bulk effect (better than excluding CSR)
- \rightarrow is 10X faster than running with 1D CSR routine

ML and Online Multi-Particle Physics Simulations

Getting easier to run physics sims that include nonlinear collective effects in online / semionline execution when coupled with HPC

→ opens up new opportunities for physicsconstrained learning

Standard interfaces and software (e.g. LUME, openPMD) make this more readily extensible to new systems

Impact-T simulations running online at SLAC

Standards for easy interfacing of simulations and optimizers

Future directions for ML-based modeling, physics modeling, and optimization/characterization are tightly-linked

Algorithms for efficient optimization and characterization (useful for simulation

exploration/design, data generation, machine characterization)

Techniques for combining physics and ML modeling

(more reliable/transferrable, require less data, more interpretable), including differentiable simulators

Representation learning

Online physics simulations

Adaptation on top of core models

Software packages and standards for data generation, online deployment of models, and optimization (*LUME*,

A common dream: fully-integrated virtual accelerator

Snowmass21 Accelerator Modeling Community White Paper

Encourage checking out the Snowmass accelerator modeling whitepaper: arXiv:2203.08335

by the Beam and Accelerator Modeling Interest Group $({\rm BAMIG})^*$

Authors (alphabetical): S. Biedron¹³, L. Brouwer¹, D.L. Bruhwiler⁷, N. M. Cook⁷, A. L. Edelen⁶, D. Filippetto¹, C.-K. Huang⁹, A. Huebl¹, N. Kuklev⁴, R. Lehe¹, S. Lund¹², C. Messe¹, W. Mori¹⁰, C.-K. Ng⁶, D. Perez⁹, P. Piot^{4,5}, J. Qiang¹, R. Roussel⁶, D. Sagan², A. Sahai¹¹, A. Scheinker⁹, E. Stern¹⁴, F. Tsung¹⁰, J.-L. Vay¹, D. Winklehnet⁸, and H. Zhang⁹

Thank you for your attention!