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Light 
sources

Fermilab CERN - Large Hadron Collider

Interesting Technical Challenges
• Complex/nonlinear dynamics
• Many small, compounding errors 
• Many parameters to monitor and control
• Interacting sub-systems
• On-demand changes in operational state
• Diagnostics sometimes limited or not put to 

full use in control (e.g. images)
• Time-varying/ non-stationary behavior

Uncertain, time-varying, nonlinear, many-parameter systems with continuous action spaces:  
à of great interest for research in control and machine learning
à lots of opportunity to both gain from and contribute to this area

Strong Incentives for Better Control
• Cost of running àTime/energy efficiency of control

• Cost of unintended down-time à Personnel cost, user time, bulk scientific output

• Achieving performance needed for science goals and other applications
• improving accelerator components and control both play a role

JLab

LBNL Visualization Group Fermilab

Novel Acceleration 
Schemes

Small Test 
Facilities

Large 
User

Facilities

IOTA

AWA

Lots of different specific 
needs, but many broadly 

similar challenges in online 
modeling, machine 

understanding, and control

SLAC

Industrial / Medical

LBNL

Emory Proton Therapy Center



LCLS

Experimenters come for a few days – a week

beam duration, x-ray wavelength etc. 
adjusted for each experiment

1,062 experiments in 2016

~1023 papers since 2009



Nonlinear, high-dimensional optimization problem

Beam exists in 6-D position-momentum phase space

Have incomplete information: measure 2-D projections or 
reconstruct based on perturbations of upstream controls

Can have dozens-to-hundreds of controllable variables and 
hundreds-of-thousands to millions to monitor
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J. Qiang, et al., PRSTAB30, 
054402, 2017

MeasurementSimulation

“10 hours on thousands of 
cores at the NERSC”
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A. Marinelli, et al., Nat. Commun. 6,  6369 (2015)

Approximate Annual Budget:  $145 million
Approximate hours of experiment delivery per year: 5000

About $30k per experiment hour to run

400 hours hand-tuning in a year
$12 million value

~10 additional experiments
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Rapid beam 
customization

Achieve new 
configurations + 

unprecedented beam 
parameters 

Fine control to 
maintain

stability within 
tolerances 



moreless
assumed knowledge of machine

Model-Free 
Optimization

Observe performance change 
after a setting adjustment

à estimate direction toward 
improvement

Model-guided 
Optimization

Update a model at each step

à use model to help select the 
next point

Global Modeling

Make fast system model

à provide guess for settings
à machine insight from 

predictions

gradient descent
simplex

Bayesian optimization
Reinforcement learning

ML system models +
inverse models

Tuning approaches can leverage different amounts of data/previous knowledge 

J. Kirschner



In a perfect world…

Use a fast, accurate model …

find some knobs that give us the beam we want and apply those to the machine

get info about unobserved parts of machine (online model / virtual diagnostic)

do offline planning and control algorithm prototyping 

d



In reality things are much more difficult…

nonlinear 
effects / 
instabilities

fluctuations/noise
(e.g. laser spot)

hidden variables / sensitivities

reality
vs.
simulation

drift over time 

F. Wang

many small, compounding 
sources of uncertainty

J. Qiang, et al., PRSTAB30, 
054402, 2017

MeasurementSimulation

“10 hours on thousands of 
cores at the NERSC”

computationally expensive simulations

AI/ML is poised to help with speed, accuracy, and adaptability of models



Accelerator simulations that include 
nonlinear and collective effects are 

powerful tools, but they can be 
computationally expensive

ML models can provide fast approximations 
to simulations

< ms execution 
speed

10^6 speedup
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Physics Sim: 
~95k core hrs, 131k sims

2246 cores, 36 hours

Neural Network: 
~2 mins on a laptop

(500 sims for training)

Smooth interpolation 
Example 𝝈𝒙 surface from 2D scan, LCLS-II Injector

Surrogate-boosted design optimization 
(example on AWA)

Warm starts for 
optimization

ML
Inverse 
Model

L1S phase
BC2 peak current

Local 
optimizer

Suggested 
initial 

settings

A. Scheinker, A. Edelen, 
et al, PRL, 2018

A. Edelen
et al., PRAB, 

2020

Deconvolution Layers

Cavity phase

Solenoid field

Bunch Charge

N Fully Connected 
Hidden Layers

… N - 2 …

Scalar outputs
VCC Size

Convolution Layers

# Particles

Mean X, Y, Z

Beam Kinetic Energy

Norm. Emittances

Beam Sizes

Mean X’, Y’, Z’

Scalar inputs

Include high-dimensional input information à better output predictions

L. Gupta, et al, 
MLST, 2021



Example Use Case: LCLS Injector Surrogate Models
• Neural networks trained on IMPACT-T sims
• Several versions aimed at different outputs and goals (e.g. 6D phase space projections, 

scalars along z, interpolation vs. accuracy on known configurations)
• Inputs sampled widely across valid ranges
• Inputs: laser length + spot size, L0 phases, solenoid strength, SQ/CQ quads, 6 matching quads
• Outputs: emittances, bunch length, spot sizes, covariances, energy

Have been using extensively for algorithm development
e.g. new Bayesian optimization methods, adaptive emittance measurement àTUPOST059

Example prototyping Bayesian optimization
IMPACT-T and SM trained on it are qualitatively similar to measurements

Example 
outputs



Finding Sources of Error Between Simulations and Measurement

Many non-idealities not included in physics simulations:
static error sources (e.g. magnetic field nonlinearities, physical offsets) 
time-varying changes (e.g. temperature-induced phase calibrations)

Want to identify these to get better understanding of machine 
à fast-executing ML model allows fast / automatic exploration of 
possible error sources

Here: calibration offset in solenoid strength found automatically with neural network 
model (trained first in simulation, then calibrated to machine)

injector
settings

laser image

calibration
transforms

longitudinal/
transverse phase space

Without calibration

With calibration

Inputs
Laser radius
Laser spot sizes
Pulse length
Charge
Solenoid
L0A phase 
L0B phase
SQ quad
CQ quad
6 matching quads

Outputs
Beam size (x,y)
Emittance (x,y)
Bunch length

scalars
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model input

co
un

ts

training set new conditions

Fundamental problem for using models online and for 
tuning: distribution shift

à accuracy is degraded on data outside of the statistical 
distribution of the training data

à many ML approaches don’t consider uncertainty 
estimates

model input

co
un

ts
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model input
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ts

training set new conditions

Fundamental problem for using models online and for 
tuning: distribution shift

à accuracy is degraded on data outside of the statistical 
distribution of the training data

à many ML approaches don’t consider uncertainty 
estimates

model input

co
un

ts

wikimedia
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Want to have a reliable model confidence metric before using predictions in 
control/analysis; can also guide model updating

à need uncertainty quantification / robust modeling

model input

co
un

ts

training set new conditions

Fundamental problem for using models online and for 
tuning: distribution shift

à accuracy is degraded on data outside of the statistical 
distribution of the training data

à many ML approaches don’t consider uncertainty 
estimates

model input

co
un

ts

wikimedia



Sample Number (Time Ordered)

Neural network with quantile 
regression predicting FEL pulse 
energy at LCLS

unseen regionstest data

L. Gupta

https://github.com/lipigupta/FEL-
UQ/blob/main/notebooks/QR--Interp-2.ipynb

Uncertainty Quantification / Robust Modeling
Need for decision making under uncertainty (e.g. safe optimization)
Prediction uncertainties can be leveraged for online model updating, intelligent sampling

Current approaches 
• Ensembles
• Gaussian Processes
• Bayesian NNs
• Quantile Regression

https://github.com/lipigupta/FEL-UQ/blob/main/notebooks/QR--Interp-2.ipynb


Sample Number (Time Ordered)

Neural network with quantile 
regression predicting FEL pulse 
energy at LCLS

unseen regionstest data

L. Gupta

BNN Predictions
ASTRA Simulation

White area 
– values 
left out of 
training

A. Mishra et. al., PRAB, 2021

Scalar parameters for the 
LCLS-II injector

(Bayesian neural network)

https://github.com/lipigupta/FEL-
UQ/blob/main/notebooks/QR--Interp-2.ipynb
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Scalar parameters for the 
LCLS-II injector

(Bayesian neural network)
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Uncertainty Quantification / Robust Modeling
Need for decision making under uncertainty (e.g. safe optimization)
Prediction uncertainties can be leveraged for online model updating, intelligent sampling

Current approaches 
• Ensembles
• Gaussian Processes
• Bayesian NNs
• Quantile Regression

LCLS longitudinal 
phase space

(quantile regression 
+ ensemble)

In-distribution

see A. Hanuka talk 
tomorrow morning, 

TUIXGD1

Out-of-distribution 
O. Convery, et al., PRAB, 2021

https://github.com/lipigupta/FEL-UQ/blob/main/notebooks/QR--Interp-2.ipynb


Sample Number (Time Ordered)

Neural network with quantile 
regression predicting FEL pulse 
energy at LCLS

unseen regionstest data

L. Gupta

BNN Predictions
ASTRA Simulation

White area 
– values 
left out of 
training

A. Mishra et. al., PRAB, 2021
LCLS injector transverse phase space  (NN ensemble)

Scalar parameters for the 
LCLS-II injector

(Bayesian neural network)

https://github.com/lipigupta/FEL-
UQ/blob/main/notebooks/QR--Interp-2.ipynb

Uncertainty Quantification / Robust Modeling
Need for decision making under uncertainty (e.g. safe optimization)
Prediction uncertainties can be leveraged for online model updating, intelligent sampling

Current approaches 
• Ensembles
• Gaussian Processes
• Bayesian NNs
• Quantile Regression

LCLS longitudinal 
phase space

(quantile regression 
+ ensemble)

In-distribution

see A. Hanuka talk 
tomorrow morning, 

TUIXGD1

Out-of-distribution 
O. Convery, et al., PRAB, 2021

https://github.com/lipigupta/FEL-UQ/blob/main/notebooks/QR--Interp-2.ipynb
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Example of beam size prediction and uncertainty estimates under drift from a neural 
network (@ UCLA Pegasus)

Uncertainty estimate from neural network ensemble does not cover the OOD prediction error, but it does give a 
qualitative metric for relative uncertainty

unseen region



à how can we increase model generalization to new conditions and decrease 
data set sizes (i.e. improve sample-efficiency)?

à inherent question: how to make ML models more readily adaptable?

Data sets also present a challenge:

• Most examples above used thousands to tens-of-
thousands of examples

• Not feasible to gather new data in every 
configuration (from simulation or measurements) 

• Not everyone has access to large compute 
resources or ample beam time

23



“Physics-informed” modeling à incorporate physics domain knowledge to reduce need for 
data, and aid interpretability + generalization

Many approaches:
• Combine physics representations and machine 

learning models directly (e.g. differentiable 
simulations)

• Add physics constraints to output metrics

• Force to satisfy expected symmetries
(e.g. inductive biases in ML model)

• Loose form: learn from many physics sims in a 
way that results in good representation of the 
physics (also related to representation learning)

Differentiable Taylor map physics model + weights à train like ML model
needed very little data to calibrate  PETRA IV model

Ivanov et al, PRAB, 2020

Review paper: Karniadakis et al, Nat Rev Phys 3, 422–440 (2021)
Snowmass accelerator modeling white paper: arXiv:2203.08335

Physics-driven representation learning
(e.g. encoder-decoder neural network models)

useful latent space

Many examples in this 
conference, including 
talks tomorrow: 
TUIXGD1, TUOXGD3

Latent 1

La
te

nt
  2

https://arxiv.org/abs/2203.08335


Joint modeling of hysteresis and beam propagation is more accurate 
and enables in-situ hysteresis characterization

Higher-precision optimization possible when including hysteresis

Example: Differentiable
Hysteresis Modeling + ML

Poster: TUPOST061
R. Roussel, et al., PRL, 2022

BO on sys. 
with hysteresis

Hybrid BO on sys.
with hysteresis
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Including correlation between inputs enables increases sample-efficiencyà results in faster optimization
Kernel-from-Hessian enables easy computation of correlations even in high dimension

à design GP kernel from expected correlations between inputs (e.g. quads)

à take the Hessian of model at expected optimum to get the correlations  

vertical emittance
tuning @SPEAR3

No measured data needed ahead of 
time, just a physics model

J. Duris et al., PRL, 2020 
A. Hanuka, et al., PRAB, 2021

FEL tuning @LCLS

Example: Physics-informed Gaussian Processes



Better Data Sampling:
Bayesian Exploration

adaptive sampling

learning 
constraints

proximal
biasing

R. Roussel et. al. 
Nat. Comm. 2021
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Enables sample-efficient 
characterization of high-dimensional 
spaces, while respecting both input 

and output constraints



Example for photoinjector emittance at AWA 
à much more efficient sampling than N-D scans R. Roussel et. al. 

Nat. Comm. 2021



Explored 10-D input space on FACET-II injector at 700pC bunch charge
• Inputs: solenoid, bucking coil, corrector quads, matching quads
• Constrained on match and emittance
• Data sampling enabled easy model learning

Constrained Outputs

~2 hours for thorough exploration in 10-D
contrast with 8-12 hours for 3-D scan

Variables

29
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pixels

pi
xe

lsPredicted

Measured

Examples 
from test set 
of held-out 
input ranges

Use of Bayesian exploration to generate training data was sample-efficient, reduces some of the burden of data 
cleaning, and results in a well-balanced distribution for the training data set over relevant space

Explored 10-D input space on FACET-II injector at 700pC bunch charge
• Inputs: solenoid, bucking coil, corrector quads, matching quads
• Constrained on match and emittance
• Data sampling enabled easy model learning



à Each area aids creation of generalizable, adaptable accelerator models

31

Generalizable 
Learned

Representations

Efficient 
Sampling Methods

(active learning)

Continual Learning

Adaptive Feedback

Robust Modeling /
Uncertainty Quantification

Physics-informed 
Modeling

Better Model 
Representations

Model Uncertainty
Assessment

Online Model 
Updating



Surrogate Models of Different Granularities

32

general modular components

multi-particle
tracking steps

sub-section models (e.g. injector)
machine-wide models



Embedding surrogates in tracking calculations
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Trained fully-connected, feed-
forward  network

Trained on >1M samples from 10k 
different initial beam distributions 
(generated from start-to-end LCLS 
sims with random linac settings)

Impact of Coherent Synchrotron Radiation (CSR) is 
computationally intensive to simulate, even for 1D

Replace wakefield calculation in tracking step with a neural 
network 



Embedding surrogates in tracking calculations
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Impact of Coherent Synchrotron Radiation (CSR) is 
computationally intensive to simulate, even for 1D

Replace wakefield calculation in tracking step with a neural 
network 
à not perfect, but gets the bulk effect (better than excluding CSR)
à is 10X faster than running with 1D CSR routine



Getting easier to run physics sims that include 
nonlinear collective effects in online / semi-
online execution when coupled with HPC

à opens up new opportunities for physics-
constrained learning

Standard interfaces and software (e.g. LUME, 
openPMD) make this more readily extensible 
to new systems

LCLS

FACET-II

ML and Online Multi-Particle Physics Simulations

Impact-T simulations running online at SLAC







Online physics simulations

Techniques for combining 
physics and ML modeling
(more reliable/transferrable, 

require less data, more 
interpretable), including 

differentiable simulators

Algorithms for efficient optimization and characterization (useful for simulation 
exploration/design, data generation, machine characterization)

Sampling constraints learned on-the-fly

ground truth validity probability

Roussel et. al. Nat. Comm. 2021

Hanuka et. al. PRAB , 2021

Roussel et. al. PRL. 2022

Future directions for ML-based modeling, physics modeling, and 
optimization/characterization are tightly-linked

Software packages and standards for 
data generation, online deployment 
of models, and optimization (LUME, 

xopt, Badger)

Adaptation on top of core models

Representation 
learning



Data 
processing

Data 
processing

FACET-II LCLS

C
on

tr
ol

 S
ys

te
m

Fast Online Modeling

appx. physics sims

adaptive machine
learning models

Edge and Cluster Compute – FPGA/ASIC, CPU, GPU 

detailed physics sims
design optimization
ML model training

Databases

(measurements,
predictions, 

models)

User Interfaces / Visualization

Offline Modeling

A common dream: fully-integrated virtual accelerator

Encourage checking out the Snowmass accelerator 
modeling whitepaper: arXiv:2203.08335

Model-guided 
tuning/characterization

https://arxiv.org/abs/2203.08335


Thank you for your attention!
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