A method for obtaining 3D charge density distribution of a self-modulated proton bunch

T. Nechaeva1, P. Muggli1, L. Verra1,2,3, G. Zevi Della Porta2
on behalf of the AWAKE Collaboration

1 Max-Planck-Institute for Physics, Munich, Germany
2 CERN, Geneva, Switzerland
3 Technical University Munich, Munich, Germany

tatiana.nechaeva@cern.ch
Conventional accelerators

- Synchrotron radiation in circular machines $\sim \frac{1}{m^4}$ – limitation for light particle colliders

- Modern RF cavities: limit on accelerating gradient ~ 100 MeV/m (electric breakdown)

 \Downarrow

- Increase acceleration length to increase particle energy

Image: Stanford Linear Accelerator (SLAC), USA; building covering the beam tube is ~3.2 km long! © Wikipedia

Image: CLIC – possible future linear collider at CERN. © CERN
Plasma-based acceleration (PWFA):

- Particle bunch or laser pulse propagates through plasma →
- Plasma electrons oscillation →
- Transverse and longitudinal electric and magnetic fields – wakefields
- Linear theory: wakefields – sinusoidal oscillations at ω_{pe}

Electric fields up to $E_{WB} = \frac{m_e c \omega_{pe}}{e}$, $\omega_{pe} = \sqrt{\frac{n_{pe} e^2}{\varepsilon_0 m_e}}$

\downarrow

Accelerating gradient limit [eV/m] $\sim 96\sqrt{n_{pe}}$ [cm$^{-3}$]

when $n_{pe} = 10^{18}$ cm$^{-3}$ ⇒ gradient ~ 100 GeV/m
AWAKE experiment

- AWAKE – Advanced Wakefield Experiment
- CERN-based R&D project – collaboration of ~20 institutes → proton driven PWFA studies
- Final goal → quality-preserving high-energy electron beam accelerator

Image: AWAKE experimental setup © M. Brice, CERN
Proton drive bunch

• Energy gain of witness bunch ≤ energy loss of drive bunch

• p^+ bunch → higher energies than laser pulses or e^- bunches:

 SPS p^+ bunch (used in AWAKE) → ~19 kJ

 SLAC e^- bunch → ~91 J

 1 PW, 100 fs laser pulse → < 100 J

• p^+ bunch → drive wakefields over long distance → no need for staging
Proton drive bunch

- Energy gain of witness bunch ≤ energy loss of drive bunch

- p^+ bunch \rightarrow higher energies than laser pulses or e^- bunches:
 - SPS p^+ bunch (used in AWAKE) \rightarrow ~19 kJ

- SLAC e^- bunch \rightarrow ~91 J

- 1 PW, 100 fs laser pulse \rightarrow < 100 J

- p^+ bunch \rightarrow drive wakefields over long distance \rightarrow no need for staging
Proton drive bunch

- Energy gain of witness bunch \leq energy loss of drive bunch

- p^+ bunch \rightarrow higher energies than laser pulses or e^- bunches:
 - SPS p^+ bunch (used in AWAKE) \rightarrow ~19 kJ
 - SLAC e^- bunch \rightarrow ~91 J
 - 1 PW, 100 fs laser pulse \rightarrow < 100 J

- p^+ bunch \rightarrow drive wakefields over long distance \rightarrow no need for staging

- Theory: resonantly drive high-amplitude wakefields \rightarrow bunch length $\sigma_z \sim \lambda_{pe}$; SPS p^+ bunch: $\sigma_z \sim 12$ cm $\gg \lambda_{pe}$

- Long p^+ bunch in plasma \rightarrow self-modulation instability (SMI) \rightarrow train of micro-bunches

Figure: $E_p = 1$ TeV, $E_e = 0.62$ TeV after 450 m of acceleration. © A. Caldwell et al., Nature Phys. 5 (2009) 363

p^+ bunch ~ 12 cm
Self-modulation: instability → seeded

Self-modulation: instability → seeded

No seeding

Seeding

Relativistic ionization front (RIF) seeding

Sudden onset of beam-plasma interaction → seed wakefield

Reproducible outcome!

Δt/τ_{pe} ~ 6 %,
τ_{pe} = 2π/ω_{pe}
Self-modulation: instability → seeded

No seeding

Seeding

\[\Delta t / \tau_{pe} \sim 6 \% \]
\[\tau_{pe} = \frac{2\pi}{\omega_{pe}} \]

Reproducible outcome!

L. Verra et al., accepted for publication to Phys. Rev. Lett. (2022)
Self-modulation: instability \rightarrow seeded

No seeding

Seeding

- e^- bunch seeding
- e^- bunch drives seed wakefields

Reproducible outcome!

$\Delta t/\tau_{pe} \sim 6\%,$

$\tau_{pe} = 2\pi/\omega_{pe}$
e− and p+ bunches aligned
force on p+ bunch centroid = 0
force on p+ bunch slice → focusing/defocusing

eSSM vs eSSM+Hosing
eSSM vs eSSM+Hosing

e and p bunches aligned

- Force on p bunch centroid = 0
- Force on p bunch slice → focusing/defocusing

e and p bunches misaligned

- Force on p bunch centroid ≠ 0 → hosing
- Force on p bunch slice → focusing/defocusing

Hosing + eSSM ↓

- One plane
- Plane ⊥ hosing
eSSM vs eSSM+Hosing

e− and p+ bunches aligned
force on p+ bunch centroid = 0
force on p+ bunch slice → focusing/defocusing

eSSM

e− and p+ bunches misaligned
force on p+ bunch centroid ≠ 0 → hosing
force on p+ bunch slice → focusing/defocusing

Hosing + eSSM
↓
one plane
↓
hosing

position (mm)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-200 180 160 140 120 100 80 60
time (ps)

position (mm)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-200 180 160 140 120 100 80 60
time (ps)
Hosing occurs in the plane of misalignment.

- Plane of misalignment ≠ main plane of observation?

Need a method to look at two (or more) planes simultaneously.

-eSSM

-e and p⁺ bunches aligned
force on p⁺ bunch centroid = 0
force on p⁺ bunch slice → focusing/defocusing

-e and p⁺ bunches misaligned
force on p⁺ bunch centroid ≠ 0 → hosing
force on p⁺ bunch slice → focusing/defocusing

Hosing + eSSM
↓
one plane
plane ⊥ hosing
Method

Vary the mirror angle ↔ vary streak camera slit position across p^+ bunch transverse distribution
Method

Vary the mirror angle ↔ vary streak camera slit position across p^* bunch transverse distribution
1. Vary mirror angle →
 - Time-integrated p^+ bunch charge density distribution as a function of position across the bunch →
 - Find central point
 - Determine positions where to take data

$\sigma_b \sim 0.73$ mm

- summed charge density
- positions where slices of p^+ bunch charge density distribution are recorded

Step size – $0.5\sigma_b$
Results

1. ● Vary mirror angle →
 ● Time-integrated p^+ bunch charge density distribution as a function of position across the bunch →
 ● Find central point
 ● Determine positions where to take data

 \[\sigma_b \approx 0.73 \text{ mm} \]

2. ● Do a test →
 ● Incoming p^+ bunch (propagating as if in vacuum)
 ● Slices placed in linear rectangular grid → 3D distribution

 \[+1.5\sigma_b \]
 \[+1\sigma_b \]
 \[+0.5\sigma_b \]
 \[0 \]
 \[-0.5\sigma_b \]
 \[-1\sigma_b \]
 \[-1.5\sigma_b \]

 ● – summed charge density
 ✷ – positions where slices of p^+ bunch charge density distribution are recorded

Step size \(\approx 0.5\sigma_b \)
Results

1. • Vary mirror angle →
 • Time-integrated p^+ bunch charge density distribution as a function of position across the bunch →
 • Find central point
 • Determine positions where to take data

 ![Graph showing summed charge density and central point](image)

 ● summed charge density
 ◆ positions where slices of p^+ bunch charge density distribution are recorded

 Step size – $0.5\sigma_b$

3. • p^+ bunch in plasma →
 • Misalign e^- bunch \perp slit

 ![Diagram showing eSSM \parallel slit and Hosing \perp slit](image)
Conclusion

- AWAKE: seeding of self-modulation with e- bunch → alignment-sensitive
Conclusion

- **AWAKE**: seeding of self-modulation with e^- bunch → alignment-sensitive

- e^--p^+ aligned → eSSM → in all planes

- e^--p^+ misaligned → Hosing + eSSM +

- Hosing occurs in the plane of misalignment → if not main plane of observation → can be unnoticed

↓
Conclusion

- AWAKE: seeding of self-modulation with e^- bunch → alignment-sensitive

- $e^-p^+ \text{ aligned} \rightarrow e\text{SSM}$ → in all planes

- $e^-p^+ \text{ misaligned} \rightarrow \text{Hosing} + e\text{SSM}$

- Hosing occurs in the plane of misalignment → if not main plane of observation → can be unnoticed

- Develop a method for simultaneous observation of two (or more) planes

- Do a “streak camera slit scan” across the transverse p^+ bunch charge density distribution
Conclusion

- AWAKE: seeding of self-modulation with e^- bunch → alignment-sensitive

- e^-p^+ aligned → eSSM → in all planes

- e^-p^+ misaligned → Hosing + eSSM

- Hosing occurs in the plane of misalignment → if not main plane of observation → can be unnoticed

 ↓

- Develop a method for simultaneous observation of two (or more) planes

- Do a “streak camera slit scan” across the transverse p^+ bunch charge density distribution

- Test with the incoming p^+ bunch (no plasma)

- Test with the p^+ bunch in plasma: Hosing \perp slit and eSSM \parallel slit
Conclusion

- AWAKE: seeding of self-modulation with e-bunch → alignment-sensitive

- e^-p^+ aligned → eSSM

- e^-p^+ misaligned → Hosing + eSSM

- Hosing occurs in the plane of misalignment → if not main plane of observation → can be unnoticed

- Develop a method for simultaneous observation of two (or more) planes

- Do a “streak camera slit scan” across the transverse p^+ bunch charge density distribution

- Test with the incoming p^+ bunch (no plasma)

- Test with the p^+ bunch in plasma: Hosing \perp slit and eSSM \parallel slit

- Apply to future studies of simultaneous occurrence of hosing and eSSM

- Is eSSM-only possible?
Conclusion

- AWAKE: seeding of self-modulation with e^- bunch \rightarrow alignment-sensitive

- e^--p^+ aligned \rightarrow eSSM \rightarrow in all planes

- e^--p^+ misaligned \rightarrow Hosing + eSSM

- Hosing occurs in the plane of misalignment \rightarrow if not main plane of observation \rightarrow can be unnoticed

- Develop a method for simultaneous observation of two (or more) planes

- Do a “streak camera slit scan” across the transverse p^+ bunch charge density distribution

- Test with the incoming p^+ bunch (no plasma)

- Test with the p^+ bunch in plasma: Hosing \perp slit and eSSM \parallel slit

- Apply to future studies of simultaneous occurrence of hosing and eSSM

- Is eSSM-only possible?

Thank you for your attention!