Synchrotron Light Illuminates the Origin of the Solar System and Life

Tomoki Nakamura and initial analysis team STONE

Team STONE: M. Matsumoto, K. Amano, Y. Enokido, M. E. Zolensky, T. Mikouchi, H. Genda, S. Tanaka, M. Y. Zolotov, K. Kurosawa, S. Wakita, R. Hyodo, H. Nagano, D. Nakashima, Y. Takahashi, Y. Fujioka, M. Kikuiri, E. Kagawa, M. Matsuoka, A. J. Brearley, A. Tsuchiyama, M. Uesugi, J. Matsuno, Y. Kimura, M. Sato, R. E. Milliken, E. Tatsumi, S. Sugita, T. Hiroi, K. Kitazato, D. Brownlee, D. J. Joswiak, M. Takahashi, K. Ninomiya, T. Takahashi, T. Osawa, K. Terada, F. E. Brenker, B. J. Tkalcec, L. Vincze, R. Brunetto, A. Aléon-Toppani, Q. H. S. Chan, M. Roskosz, J.-C. Viennet, P. Beck, E. E. Alp, T. Michikami, Y. Nagaashi, T. Tsuji, Y. Ino, J. Martinez, J. Han, A. Dolocan, R. J. Bodnar, M. Tanaka, H. Yoshida, K. Sugiyama, A. J. King, K. Fukushi, H. Suga, S. Yamashita, T. Kawai, K. Inoue, A. Nakato, T. Noguchi, F. Vilas, A. R. Hendrix, C. Jaramillo, D. L. Domingue, G. Dominguez, Z. Gainsforth, C. Engrand, J. Duprat, S. S. Russell, E. Bonato, C. Ma, T. Kawamoto, H. Yurimoto, R. Okazaki, H. Yabuta, H. Naraoka, K. Sakamoto, S. Tachibana, S. Watanabe, Y. Tsuda

Hayabusa2 sample return mission from C-type asteroid Ryugu Launch at 13:22pm JST on Dec 3rd, 2014

Why Asteroids?

What we know from return sample analysis

Early evolution of the solar system is recorded **only in the asteroids** and comets.

C-type asteroids are important because they might have delivered water and organics to the early Earth.

Basic characteristics

Spinning-top shape

Rotation T: 7.63h (past ~ 3.5h)

Diameter ~900m

Density 1.2 g/cc (very porous > 50%)

Rotation axis perpendicular to ecliptic plane

• Numerous craters and boulders

 Reflectance spectra of VNIR Very dark Similar to C chondrite meteorites
2% reflectance at v band (rich in organics) Small 3 micron absorption (hydrous silicates)

Ryugu is rubble-pile, spinning-top shape, carbonaceous and hydrated asteroid Many boulders larger than craters

hyb2_onc_20180630_070007_tvf_l2a.fit

HY2 JAXA/ONC team

Asteroid Ryugu

Equatorial ridge

Shrap edge Large boulders and craters Slightly brighter

Altitude

Red/Blue

Space weathering and land slide?

Blue/red distribution in each site1. L site blue/ M site red2. M08 has a large blue area,

(Tatsumi and ONC team)

Touch down sequence

Touch down 1st operation: Feb 20th 2019

Successful imagining before and after touchdown with CAM-H (animation)

TD moment captured at 1 fps timing.

(Animation plays at 5x speed)

(Image credit: JAXA)

Initial analysis of Ryugu samples

Team stone (PI: Tomoki Nakamura, Tohoku U)

Obtain reflectance spectra of coarse-grained return samples to estimate the material distribution on the surface of asteroid Ryugu. Perform nondestructive material analysis using synchrotron radiation high-energy X-ray beams to determine the three-dimensional internal structure and elemental distribution of returned samples. Microstructural observation will be performed using a high-resolution electron microscope. Physical properties such as thermal conductivity will also be measured.

All data will be integrated to model the formation process of the asteroid Ryugu.

World-wide synchrotron network

Stone team (~150 people from all over the world)

Sixteen mm-size samples (Stones) Two powders for spectroscopy

Scientific Objectives

Elucidate formation and evolution process of Ryugu's parent asteroid.

- 1. Characterize mineralogy of stone samples.
- 2. Measure reflectance spectra
- 3. Analyze element abundance by X-ray and muon.
- 4. Measure physical properties of stone samples.
- 5. Make a chemical model of aqueous alteration.
- 6. Simulate the thermal evolution and impact disruption of Ryugu' parent asteroid based on 2~5.

CT scan of a large Ryugu sample C0002

SPring-8 beamline 20XU CT image resolution < 1 μm

Fine-grained phyllosilicate rich lithology.

No well-distinct chondrules and CAIs are found.

CI chondrite lithology

Where in the solar nebula did Ryugu form?

Craters on the moon

Numerous small craters on lunar highlands

When the surface is formed?

What is the particle environment on the moon?

Craters on Ryugu?

Crater and boulder distribution on asteroid Ryugu (Sugita et al. 2019)

Conclusions

- Sixteen Ryugu stones measuring 1-8 mm consist mainly of phyllosilicates, carbonates, iron sulfides and oxides, and phosphates. The mineral composition indicates that Ryugu's parent asteroid experienced pervasive aqueous alteration.
- Many Ryugu stones are breccia consisting of small fragments (< 1mm). Some fragments retain the least-altered lithology with high abundance of anhydrous silicates. The aqueous alteration in Ryugu's parent asteroid changed an olivinepyroxene rich lithology, remaining as the least-altered fragments in Ryugu samples, into phyllosilicate-carbonate rich lithologies, the predominant material of Ryugu samples.
- The high abundance of carbonates and the presence of CO₂-bearing water in pyrrhotite (Zolensky et al. 2022 LPSC) indicate that Ryugu's parent asteroid formed beyond the H₂O and CO₂ snow lines in the solar nebula, where, based on Ryugu mineralogy, very limited amounts of high-temperature objects including small chondrules and Ca, Al-rich inclusions were present.

Flat surfaces: A detector for regolith environment

Conclusions

- Sixteen Ryugu samples measuring 1-8 mm consist mainly of phyllosilicates, carbonates, iron sulfides and oxides, and phosphates. The mineral composition indicates that Ryugu's parent asteroid experienced pervasive aqueous alteration.
- Many Ryugu samples are breccia consisting of small fragments (< 1mm). Some fragments retain the least-altered lithology with high abundance of anhydrous silicates. The aqueous alteration in Ryugu's parent asteroid changed an olivinepyroxene rich lithology, remaining as the least-altered fragments in Ryugu samples, into phyllosilicate-carbonate rich lithologies, the predominant material of Ryugu samples.
- The high abundance of carbonates and the presence of CO₂-bearing water in pyrrhotite (Zolensky et al. in this session) indicate that Ryugu's parent asteroid formed beyond the H₂O and CO₂ snow lines in the solar nebula, where, based on Ryugu mineralogy, very limited amounts of high-temperature objects including small chondrules and Ca, Al-rich inclusions were present.

A0067 Melt splash

A0067 Melt splash 3D structure

10 µm

A0067: Melt splash in a crater

Melt splash microtexture

~ 500nm thickness

High density of gas bubbles filled with low-Z material

Dehydration of hydrous silicates beneath the melt

How to polish samples from Asteroid Ryugu

Analytical X-ray nano-tomography at BL47XU of SPring-8

Combination of DET-SIXM gives **3D mineral maps** (as RGB-CT image: LAC(7)-LAC(7.35)-RID)

Fluid inclusion in hexagonal shape pyrrhotite Fe_{1-x}S

3-micron size inclusion that is completely enclosed in pyrrhotite is filled with homogeneous low-Z material. The inclusion is completely enclosed in pyrrhotite.

Depth from the sample surface to the inclusion (~2 um)

Hayabusa2 mission profile

Event	Date
Launch	Dec. 3, 2014
Earth swing-by	Dec. 2015
Ryugu arrival	Jun. 2018
Ryugu departure	Dec. 2019
Earth arrival	Dec. 2020

C-type Ryugu vs. S-type Itokawa

Ryugu C-type asteroid Perihelion 0.96AU Aphelion 1.42AU Revolution period: 1.30 yr