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Abstract
Routinely, particle tracking in accelerators is done either

by tracking element-by-element which is slow, or by using a
transfer map that does not take into account radiation effects.
Here we present a method for using Taylor maps that have
radiation effects included. The mapping is divided into a
radioactive part and a symplectic part. The radiative part
produces the correct second order stochastic correlations
between all phase-space dimensions. And the symplectic
part is handled by partial map inversion, which eliminates
non-symplectic effects due to the finite truncation of the Tay-
lor series. This enables tracking simulations to use maps of
lower order than what would otherwise be necessary leading
to a speedup of the simulation.

INTRODUCTION
Particle tracking is an important and widely used simu-

lation tool since it is the only technique that can accurately
and reliably probe the nonlinear effects that can develop in
particle beams over many turns [1].

Particle tracking generally is done either element-by-
element or using maps which transport particles over many
lattice elements. The element-by-element tracking is most
reliable but slow, especially for large machines with some-
times tens of thousands of elements. Map tracking, which
uses a set of truncated Taylor series expansions to represent
large sections of the accelerator, can be orders of magnitude
faster. However, such maps can introduce errors from trun-
cating the power series, which are usually non-symplectic,
and which disturb tracking especially at large amplitudes.
Furthermore, such maps have historically not included radia-
tion effects, which are often essential, especially in electron
rings.

To partly remedy this, a map can be constructed which
includes radiation effects. Denoting the orbital phase space
coordinates with respect to some reference coordinates (gen-
erally the closed orbit) by 𝜁 the map is written:

®𝜁 𝑓 = ®𝑍
(
®𝜁 𝑖
)
+ 𝑆 ®𝜉 (1)

Superscript 𝑖 indicates initial coordinates at the beginning of
the map, superscript 𝑓 indicates final coordinates at the end
of the map, and 𝑍 is a truncated Taylor series transport map
at some order 𝑛0 with radiation damping (the deterministic
part of the radiation effect) included. It will be assumed that
®𝑍 has no constant part: ®𝑍 (®0) = ®0. In the above equation, ®𝑆
is a 6×6 matrix which represents the fluctuation (stochastic)
radiation effect and ®𝜉 is a vector of six independent Gaussian
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distributed random numbers with unit sigma and zero mean.
Here higher order terms in the stochastic fluctuations have
been ignored.

Construction of maps of the form Eq. (1) have been im-
plemented in the software package FPP/PTC [2, 3] and this
code has been interfaced to the accelerator simulation code
Bmad [4]. In this paper will be discussed how to avoid
non-symplectic effects by partial map inversion.

For a truncated Taylor map, if 𝑛0 > 1, by virtue of missing
terms higher than 𝑛0 in the expansion, there will be non-
symplectic behavior that is more severe at larger amplitudes.
One way to avoid this is to calculate ®𝑍 at a large enough
𝑛𝑜 so that the non-symplectic behavior at the maximum
amplitude of tracked particles is not significant. This has
the disadvantage in that it increases computation time, both
in computing the map initially and during tracking when the
map must be repeatedly evaluated. Another possibility is to
add terms to ®𝑍 of order higher than 𝑛0 to counteract the non-
symplectic effects. Unfortunately, adding terms may lead to
nonphysical behavior. For example, if stochastic radiation
effects are included in the simulation, one of the authors (P.
Nishikawa) has observed vertical beam blow up due to slight
nonphysical non-linear anti-damping.

Presented in this paper is a third way to remove non-
symplectic behavior. This involves “symplectifying the
map”. This is done by first working on the jets via “symplec-
tic restoration” and then tracking is done via “symplectifica-
tion” using a generating function on the nonlinear symplectic
part of the map.

SYMPLECTIC RESTORATION
Symplectic restoration involves a rewriting of the jet ®𝑍 as

a concatenation of 4 jets, dropping the cumbersome vector
arrows:

𝑍 = 𝐿𝑟 ◦ 𝑁𝑟 ◦ 𝐿𝑠 ◦ 𝑁𝑠 (2)
𝐿𝑟 is a linear map near the identity which is nonsymplectic
since it contains the effects of the radiation, 𝑁𝑟 is a purely
nonlinear jet which contains effects of the radiation, 𝐿𝑠 is a
linear symplectic map, and lastly 𝑁𝑠 is a purely nonlinear
symplectic jet, the linear part of which is the identity.

In the absence of radiation, the map 𝑍 is simply the sym-
plectic map 𝐿𝑠 ◦𝑁𝑠 . To get this factorization, we first extract
the linear part of 𝑍 denoted 𝑍1. This map is almost sym-
plectic since it is assumed that the radiation effect is small.
A contraction mapping due to Furman (see [5], p. 5351,
denoted 𝑆1) is used to produce a symplectic map near 𝑍1:

𝐿𝑠 = lim
𝑘→∞

𝑆1 ( 𝑆1 ( 𝑆1 (︸          ︷︷          ︸
𝑘 𝑡𝑖𝑚𝑒𝑠

· · · 𝑍1 · · · ) ) ) = 𝑆𝑘1 (𝑍1) (3)
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For the map 𝑆1 we choose:

𝑆1 (𝑀) = 1
2
[
3𝐼 − 𝑀𝐽𝑀⊤𝐽⊤

]
𝑀 (4)

where the superscript ⊤ denotes the transpose and 𝐽 is the
matrix defining the Poisson bracket, that is, a rotation of 90𝑜
in each degree of freedom. In practice, 𝐿𝑠 is calculated by
applying 𝑆1 until convergence is achieved.

Once 𝐿𝑠 is computed, 𝐿𝑟 can be evaluated using the equa-
tion

𝐿𝑟 = 𝑍1 ◦ 𝐿−1
𝑠 (5)

The next step consists in something called “symplectic
restoration” in reference [5] page 5347. We start with the
fact that a jet 𝑌 near the identity can be written in the form:

𝑌 = exp (𝐹 · ∇) 𝐼 (6)

where 𝐹 is some vector function. Using Eq. (2), the nonlin-
ear part of 𝑍 is isolated:

𝑀 ≡ 𝐿−1
𝑟 ◦ 𝑍 ◦ 𝐿−1

𝑠 = 𝑁𝑟 ◦ 𝐿𝑠 ◦ 𝑁𝑠 ◦ 𝐿−1
𝑠 ≡ 𝑁𝑟 ◦ �̃�𝑠 (7)

We need to compute �̃�𝑠 ≡ 𝐿𝑠 ◦ 𝑁𝑠 ◦ 𝐿−1
𝑠 by extracting a

Poisson bracket operator out of 𝑀 . This technique is called
symplectic restoration since the deviation from symplecticity
is often due to integration inaccuracy rather than radiation.
Here it is not the case since the deviations are due to radiation.
If we assume that 𝑀 can be written in the form

𝑀 = exp (𝐹 · ∇) 𝐼 (8)

then it follows that

𝐹 ≡ log (𝑀) (9)

The symbol ≡ is used to emphasize that there is a big pile
of notation abuses in Eq. (9). This logarithm procedure is
described an appendix of reference [6]. It is not possible
to define the logarithm of a nonlinear map of phase space
or of its jet representation directly. Rather the map whose
logarithm we take is the Lie map M of Dragt which is a map
acting on functions:

𝐹 · ∇ = log (M) (10)

In jet space, M is represented by a matrix where the basis
vectors are monomials of the phase space coordinates. This
matrix1 is denoted as IM⊤. See [8], page 113 for an example
using the map of Eq. (2.1) of reference [8], or section 2.3.1
of [6].

Since this matrix is near the identity, the expansion for
the logarithm convergences. In fact, since it is a nonlinear
jet, it convergences in a finite number of steps because the
jet minus the identity is nilpotent:

log (𝑀 ) =
𝑛𝑜∑︁
𝑛=0

(−1)𝑛+1

𝑛
(M − I)𝑛 (11)

1 In the paper by Yu [7], even though the connection is not made explic-
itly, the matrix used by Yu (Eq. (1.5), is the matrix of Dragt’s Lie map
albeit transposed because Yu’s matrix acts on vectors instead of compo-
nents. The more natural map known by most people is the map acting on
phase space moments which can be represented by a matrix if truncated.
The matrix representation of the Lie map is the transpose of the matrix
associated to moments.

This operation is central for the connection between tracking
codes and Hamiltonian perturbation theory à la Guignard
(Forest [6]).

The next step is to assume that the jet is mildly nonsym-
plectic and to extract a Poisson bracket operator : 𝑤 : out
of 𝐹 from which we will compute �̃�𝑠. This procedure is
mentioned in [5]:

𝑤 =

∫ 𝑧

0
𝐽𝐹 (𝑧) · 𝑑𝑧 =

∫ 1

0
𝐽𝐹 (𝛼𝑧) · 𝑧 𝑑𝛼 (12)

The first integral in Eq. (12) is over an arbitrary path. If the
jet is symplectic, the result is path independent. Since we
have radiation, the jet produced by :𝑤: is different from 𝑀 .
Now we use :𝑤: to compute the associated jet �̃�𝑠;𝑤:

�̃�𝑠;𝑤 = exp (:𝑤:) 𝐼
⇒ 𝑁𝑠 = 𝐿−1

𝑠 ◦ �̃�𝑠;𝑤 ◦ 𝐿𝑠 (13)

The radiative part, 𝑁𝑟 , can be gotten using �̃�𝑠;𝑤:

𝑁𝑟 = 𝑀 ◦ �̃�−1
𝑠;𝑤 (14)

With this, 𝑍 is factored as advertised in Eq. (2).

EVALUATION OF THE DETERMINISTIC
ORBITAL MAPS ON RAYS

We start with Eq. (2).

𝑍 = 𝐿𝑟 ◦ 𝑁𝑟 ◦ 𝐿𝑠 ◦ 𝑁𝑠 = 𝑊𝑟 ◦ 𝐿𝑠 ◦ 𝑁𝑠 (15)

Since the jet 𝑊𝑟 ≡ 𝐿𝑟 ◦ 𝑁𝑟 is near the identity (the radiation
effects are assumed small), to a good approximation, 𝑊𝑟 can
be computed and evaluated as a Taylor map.

The jet 𝐿𝑠 is a linear symplectic matrix and thus a bona
fide symplectic map on its own. We are left with the jet 𝑁𝑠

which is a symplectic jet with only nonlinear terms. This jet
is equivalent to the symplectic map generated by a generating
function of mixed variables:

𝑁𝑠 ≡ 𝐺 (𝑞 𝑓 , 𝑝𝑖) (16)

where

𝑞𝑖 =
𝜕𝐺 (𝑞 𝑓, 𝑝𝑖)
𝜕𝑝𝑖

, and 𝑝 𝑓 =
𝜕𝐺 (𝑞 𝑓, 𝑝𝑖)
𝜕𝑞 𝑓

(17)

This map is obtained via partial inversion of the jet 𝑁𝑠 using
a method due to M. Berz. The numerical evaluation involves
a Newton search on Eq. (17).

Also it is important not to include the linear part 𝐿𝑠 in
the function 𝐺 since it would make 𝐺 become potentially
arbitrarily.

EQUIVALENT SIMPLER PROCEDURE
We can simply factor the jet 𝑍 in terms of a linear part

and a non-linear jet:

𝑍 = 𝐿 ◦ 𝑁 (18)

The map 𝐿 is linear and can be evaluated as is on a ray.
The jet 𝑁 cannot be evaluated as is since truncation induces
gross violation of the symplectic condition. However we
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can partially invert it order by order and write an equation
similar to Eq. (17).

𝑁 (𝑞𝑖 , 𝑝𝑖) ≡ 𝑁𝑞 (𝑞 𝑓 , 𝑝𝑖) (19)

where

𝑞𝑖𝑘 = 𝑁
𝑞

2𝑘−1 (𝑞
𝑓 , 𝑝𝑖), and 𝑝

𝑓

𝑘
= 𝑁

𝑞

2𝑘 (𝑞
𝑓 , 𝑝𝑖) (20)

Here 𝑘 runs from 1 to 3 representing the 3 positions and 3
momenta. The map 𝑁𝑞 is partially inverted in the position
variables. The jets 𝑁 and 𝑁𝑞 are not the same but they
produce the same jets when properly interpreted via Eq. (20)
and therefore the symbol ≡ was used. However, using 𝑁𝑞

with a Newton search for Eq. (20) produces a symplectic
map under zero radiation conditions as opposed to tracking
with 𝑁 which will not, in general, be symplectic.

This is a simple alternate way to track a map without
having to factorize it.

PREPARATION OF THE STOCHASTIC
CONTRIBUTION TO TRACKING

Beam envelope theory incorporates the fluctuation of the
quadratic moments of phase space variables into the map.
For example, in the case of linear transport of phase pace
coordinates by the matrix 𝑀, the second order moments
matrix Σ is transported as:

Σ 𝑓 = 𝑀 Σ𝑖𝑀⊤+ Ξ where Σ𝑖 𝑗 =
〈
𝑧𝑖𝑧 𝑗

〉
. (21)

The stochastic changes due to synchrotron radiation are cap-
tures in the matrix Ξ.

To use Eq. (21) we perform a Cholesky decomposition of
the stochastic matrix Ξ:

if Ξ = 𝑆 𝑆⊤ then 𝑧 𝑓 = 𝑧𝑖 + 𝑆 𝜉 (22)

The vector 𝜉 is made of six independent random numbers of
variance one following the users favourite distribution. Often
Gaussian distributions are used. One can check the software
implementation for linear beam transport and ergodically
compute the equilibrium beam sizes: they must agree with
theory.

One can also compute nonlinear moments and they should
agree with nonlinear theory. This is available in the FPP
package.

TEST IN THE PRESENCE OF
SIGNIFICANT NONLINEARITIES

The beam typically occupies a small region of phase space
and therefore a linear theory, as in Eq. (21), correctly predicts
the beam sizes.

Since radiation happens in the longitudinal plane, imper-
vious to anything, we need to excite nonlinear coupling with
the transverse plane to see a nonlinear beam size effect. In a
normal machine, this requires coupling with the horizontal
direction. To observe this, a simulation was done in a small
lattice with the linear tunes slightly below the 𝜈𝑥 − 2𝜈𝑡 = 1
resonance. The results are shown in Table 1 which shows ele-
ments of the beam size matrix Σ𝑖 𝑗 as computed five different
ways.

Particles were tracked for 100 million turns, element by
element, with a stochastic kick at every bend. This is the
“Exact” column in Table 1. The “Linear” column is based on
Eq. (21) and shows significant differences from the “exact”
results as can be expected due to the resonance.

Extending Eq. (21) to include nonlinearities, transport of
the beam sigma matrix can be cast in the form

Σ 𝑓 = IMΣ𝑖 + Ξ (23)

where IM is the transpose of the Lie map in the deterministic
case (see [8]). IM was computed using PTC code using
approximately 9,000,000 synchrotron integrals. The result
for the equilibrium distribution is the column labeled “8𝑡ℎ
order” in Table 1. The theory behind this is used in [9]
where it is compared to the nonlinearly averaged Fokker-
Planck equation. The full theory has not yet been published.
Parenthetically, this type of calculation was done using a
Fokker-Planck equation in [10].

The columns labeled “2” and “3”in Table 1 represents
the results of using second and third order factorized maps
as described in this paper. With the lattice used, tracking
through the second order Taylor map was unstable but the
third order map gave acceptable results.

Taylor maps must be used with caution. We do not discuss
here examples with spin, but as pointed out in the footnote,
they have to be used with even more caution since the depo-
larization can depend heavily on the number of maps used.2

2 The correct inclusion of quaternions for simulating spin in the “9,000,000”
integrals has not been worked out. The correct stochastic one-turn map
is also elusive for quaternions and we are forced to use several maps at
this point to obtain the correct polarization.

Table 1: 11, 23, 25, and 33 Elements of the Beam Size Matrix Σ in Equilibrium as Calculated from the Results for a Number
of Different Tracking Algorithms

Analytical Tracking
𝚺𝒊 𝒋 Linear 8th order “Exact” “2” “3”

11 4.49 · 10−7 6.15 · 10−7 6.09 · 10−7 6.41 · 10−7 6.06 · 10−7

23 1.37 · 10−11 1.88 · 10−11 1.86 · 10−10 1.96 · 10−11 1.85 · 10−11

25 1.05 · 10−13 −1.67 · 10−14 −1.42 · 10−14 −7.00 · 10−15 −1.74 · 10−14

33 3.89 · 10−12 4.07 · 10−12 4.03 · 10−12 4.03 · 10−12 4.14 · 10−12
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