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Abstract
Surrogate modeling can lead to significant improvements

of beam dynamics simulations in terms of computational
time and resources. Application of supervised machine
learning, using collected simulation data allows to build
surrogate models which can estimate beam parameters evo-
lution based on the provided cooling channel design. The
created models help to understand the correlations between
different lattice components and the importance of specific
beam properties for the cooling performance. We present
the application of surrogate modeling to enhance final muon
cooling design studies, demonstrating the potential of such
approach to be integrated into the design and optimization
of other components of future colliders.

INTRODUCTION
In light of rising activities on the muon collider studies [1],

the applied simulation tools, optimization of design param-
eters and overall software and data handling infrastructure
gain more importance. Currently, one of the more active
areas of the design study is the final cooling system. The re-
duction of the muon beam emittance is based on the concept
of ionization cooling [2], where careful choice of the lattice
and beam parameters is required. First results obtained from
a prototype of an automatic optimization framework for the
final cooling are presented in [3]. With the growing number
of parameters and objectives to be considered in the design,
the choice of initial simulation settings will become more
challenging. Moreover, the required time and computational
resources might become a bottleneck in optimization stud-
ies based on complex simulations. Applying supervised
learning-based surrogate models promises a solution of both
challenges. The results presented in this work first, demon-
strate how optimization can be speeded up significantly by
replacing tracking simulation with Machine Learning (ML)
model prediction. Second, the application of inverted sur-
rogate models is presented, allowing to obtain initial guess
for optimization parameters, reducing the number of steps
needed to reach an optimal solution.

Supervised Learning
Supervised learning methods allow to make predictions

on unseen data, after learning a mapping function between
input variables and output targets in the provided training
samples. In this context, supervision is provided in the
form of sets of data inputs with corresponding true output
targets. While learning means adjusting parameters of
the mapping function aiming to minimize the difference
∗ elena.fol@cern.ch

between prediction made by the model and true target values
of the provided input-output pairs. The complexity of the
mapping function depends on characteristics of the data and
selected method, such that mapping between linearly related
input and output variables can be built e.g. using linear
regression models while for complex non-linear problems
neural networks with various possible architectures are
applied. Decision Trees, where each final node corresponds
to a prediction of a single output target, are also widely
used in supervised learning. Since decision trees are graphs,
their predictions are easier to interpret than others such as
deep neural networks. Combining several decision trees and
making predictions by averaging the individual output helps
to overcome the problem of over-fitting on training data and
allows to make more reliable prediction on unseen data.

In this work, we apply the Random Forest algorithm [4],
an ensemble method, where each tree in the ensemble is
trained on different parts of the training data set. This is
done in order to reduce the variance, usually causing a
small increase of bias which is then mitigated by averaging
the final prediction, allowing Random Forest to outperform
a single decision tree.

MODELING BEAM DYNAMICS
USING SUPERVISED LEARNING

Machine Learning concepts became a popular tool in vari-
ous accelerator physics areas, ranging from operation and au-
tomatic control of machine parameters [5, 6] to beam instru-
mentation analysis to improve the quality of measurements
data detecting anomalous signals [7]. While the advantages
of unsupervised learning have been mostly demonstrated
in online applications, supervised learning and in particu-
lar data-driven surrogate modeling is used also outside of
operation, e.g. to model virtual diagnostics tools [8].

Also, solving optimization problems with the help of
surrogate models brings the advantage of speeding up the
optimization process by replacing measurements or slow-
executable simulations with beam dynamics models. Such
models can be built from measurements or simulations data
to be used as training sets for supervised learning algorithms.
The application of surrogate models for the optimization
of existing accelerators and experiments planing has been
demonstrated [9], however this approach did not find a wide
application in the design of future facilities. Here we present
the first results of improving the optimization of one of the
most crucial components of the muon collider, the final cool-
ing system with the help of supervised learning.
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Figure 1: How to make use of simulation data created during
optimization for further design enhancement.

Data Preparation
As training data for the surrogate model of final cooling,

we use the simulations configuration and tracking results
from ICOOL, as shown in Fig. 1. Data can be generated pas-
sively, without performing dedicated simulations, but mak-
ing use of a well structured data handling, combining first
optimization steps and data preparation for more advanced
computationally efficient optimization. Another advantage
compared to generating the training data from simple pa-
rameter scans, is the distribution of parameter values. When
collecting data from optimization steps, the values will be
centered around potential optima, providing trained models
with additional information about the physics underlying
in the data. A detailed description of ICOOL simulations
and optimization set up for final cooling studies is presented
in [3]. To build the first prototype and verify the concept of
applying surrogate models to the design of final cooling chan-
nel, we consider transverse beam dynamics only, without
including longitudinal emittance growth and re-acceleration
of the muon beam cooled in the absorbers. In the following,
we present different options, how surrogate model can be
used in the final cooling optimization.

PREDICTION OF COOLING
PERFORMANCE

In the simplified case considering the transverse dynamics
only, the optimization is performed towards the reduction
of the transverse emittance, while keeping the transmission
rate high, passing the beam through two consecutive cooling
cells with liquid hydrogen absorber placed in a solenoid field
up to 30 T. As optimization variables, we use the radii of
the coils which built the solenoid field inside the cooling
cell to control the optics parameters 𝛽-function and 𝛼 at the
location of absorber. Absorber densities, 𝛽-function and
kinetic energy of the incoming beam are also included as
free variables. These parameters build the input of surrogate
model, while the resulting emittance reduction, the change
of the longitudinal momentum and transmission rate are the
corresponding output targets to be predicted by the surro-
gate model. The ML-based objective function evaluation
during optimization is then performed in two steps. First
we evaluate the optics matching by predicting 𝛼 and 𝛽 in
the absorber regions from the solenoid field configuration, 6
input variables in total, corresponding to the radii of match-
ing coils and main 30 T solenoid coils. As a second step,
the model predicts transmission, emittance and momentum
reduction (3 output targets) from the initial beam energy

and 𝛽-function at the start of the cell, absorber densities
and average 𝛼 and 𝛽 function values in the absorber regions
(6 input parameters).

We apply a Random Forest regressor to build these surro-
gate models from simulation data (1200 samples), achiev-
ing 98.3 % explained variance in total, on a test set of 300
samples. Figure 2 illustrates the great agreement between
predicted and true values obtained from ICOOL simulations
performed with corresponding set of input parameters. The
lowest prediction error is that of transmission rate (0.05 %),
which can be explained with the fact that this output target
has the lowest variance. Hence, it is easier for the model
to find a general mapping between input and output. The
relative emittance reduction is predicted with 1.6 % of rela-
tive mean absolute error, and 0.3 %, 0.5 % and 3.2 % for the
prediction of the reduction of longitudinal momentum and
𝛼 and 𝛽-function in absorber, respectively.

The lower prediction accuracy of transverse emittance
and 𝛽-function compared to the momentum reduction can
be explained by the ionization cooling process causing the
change of these quantities. While the energy loss comes
purely from the interaction between muons and absorber
material, the emittance reduction is additionally affected by
the multiple scattering, as shown in Fig. 3. In the second cell,
the 𝛽-function is changed due to the loss of the beam mo-
mentum. This makes the construction of mapping function
more challenging, hence leading to less accurate prediction
of these properties on unseen data. The overall high accu-
racy demonstrates the possibility to use surrogate models
to predict the quantities needed to evaluate the objective
function during optimization. Replacing time consuming
tracking simulation leads to enormous reduction of the time
needed for one optimization step by a factor of 50.

ANALYSING PARAMETER IMPORTANCE
Exploring the importance of input parameters on the tar-

gets prediction helps to better understand the contribution of
different beam and lattice properties to the overall cooling
performance, to streamline the future models and to identify
most critical parameters to be optimized towards desired
beam emittances. Random Forest algorithm can naturally
provide the ranking of variables importance during the fit-
ting process. The values of each input variable are permuted
among the training data and the resulting prediction loss is
compared against the error before the permutation, averag-
ing the error over all trees in the ensemble. The permutation
breaks the relationship between the input variable and the
output target, hence the decrease in the model score indicates
the dependence of the model on a particular variable.

Figure 4 illustrates the importance of variables used to
predict the transverse emittance reduction: initial kinetic
energy of the beam, 𝛽 at the start of the first cooling cell,
average 𝛽 at absorbers, the absorber density per cell and
mean absolute value of 𝛼 along the lattice. As expected,
the 𝛽-function at the location of absorbers has the strongest
contribution on the emittance reduction, together with 𝛼
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Figure 2: Random Forest model prediction compared to the tracking simulation of transverse emittance reduction, longitu-
dinal momentum reduction and Twiss parameter 𝛼 in the absorber regions. Prediction errors are computed as absolute
difference between true simulated and predicted values.

Figure 3: The comparison of simulating the emittance re-
duction, with and without including the multiple scattering.

Figure 4: Importance of optimization variables for the pre-
diction of transverse emittance reduction.

and the kinetic energy of the incoming beam since these
parameters define the optics of the channel and affect the
contribution of the heating term. Moreover, the predicted
optics parameters values also reflect the coils configuration
which builds the solenoid field inside the cooling cell.

While these results of importance analysis seem to be
obvious, they allow an easy interpretation of trained ML
model, to compare their prediction with analytical estimates
and to ensure that more complex dynamics can be modeled
reliably. Thus, the presented concept potentially will help to
identify most critical parameters and design bottlenecks in
the future.

INVERSE MODELS
Inverting the model’s input and output targets offers the

opportunity to predict the required initial beam energy and 𝛽-
function, absorber densities and solenoid field configuration
by providing the desired emittance, momentum reduction
and transmission as input. After training the model on 1200
samples, total test accuracy of 97 % could be achieved. To

Figure 5: Transverse emittance reduction achieved with pre-
dicted simulation parameters.

verify the trained model, we track 1000 particles using the
predicted beam and lattice parameters to ensure that the de-
sired cooling performance can be achieved. As an example,
providing the relative emittance reduction of 50 % and 98 %
transmission rate as input values, the model predicts the
lattice and beam parameters which lead to exactly 49.3 % of
emittance reduction as shown in Fig. 5 and 98 % transmis-
sion according to ICOOL simulation results. This excellent
agreement demonstrates that inverted models can provide
precise starting values for further optimization.

CONCLUSIONS
For the first time we demonstrated the concept of apply-

ing supervised learning to enhance the optimization within
design of the muon collider, specifically for the final cooling
system. The results demonstrate a great potential to speed up
optimization of cooling cells, estimate the importance of var-
ious lattice and beam properties on the cooling performance
and to provide precise initial guess for starting parameters
in further optimization. First steps towards more complex
models are already performed, by collecting the data from
simulations including longitudinal beam dynamics, allowing
to predict the evolution of longitudinal emittance and tun-
ing radiofrequency parameters. Further improvements are
possible by exploring probabilistic approach to include the
uncertainty of emittance estimation into surrogate models or
with the help of physics-informed neural networks to model
more complex beam dynamics.

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-WEPOMS046

WEPOMS046C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

2356

MC5: Beam Dynamics and EM Fields

D11: Code Developments and Simulation Techniques



REFERENCES
[1] International Muon Collider Collaboration:
https://muoncollider.web.cern.ch/

[2] D. Neuffer, “Introduction to muon cooling”, Nucl. Instr. Meth.,
vol. 532, pp. 26-31, 2004.
doi:10.1016/j.nima.2004.06.051

[3] E. Fol, C. Rogers, D. Schulte, B. Stechauner, and J. Schieck,
“Automated design and optimization of the final cooling for
a muon collider”, presented at IPAC’22, Bangkok, Thailand,
Jun. 2022, paper WEPOMS047, this conference.

[4] L. Breiman, “Random forests”, Machine Learning, vol. 45, pp.
5-32, 2001.
doi:10.1023/A:1010933404324

[5] R. J. Shalloo et al., “Automation and control of laser wake-
field accelerators using Bayesian optimization”, Nat. Commun.,
vol. 11, p. 6355, 2020.
doi:10.1038/s41467-020-20245-6

[6] G. Azzopardi et al., “Operational results on the fully automatic
LHC collimator alignment”, Phys. Rev. Accel. Beams, vol. 22,
p. 093001, 2019.
doi:10.1103/PhysRevAccelBeams.22.093001

[7] E. Fol, R. Tomás, J. Coello de Portugal, and G. Franchetti,
“Detection of faulty beam position monitors using unsupervised
learnings”, Phys. Rev. Accel. Beams, vol. 23, p. 102805, 2020.
doi:10.1103/PhysRevAccelBeams.23.102805

[8] C. Emma et al., “Virtual diagnostic suite for electron beam
prediction and control at FACET-II”, Information, vol. 12,
2021. doi:10.3390/info12020061

[9] A. Edelen et al., “Machine learning for orders of magnitude
speedup in multiobjective optimization of particle accelerator
systems”, Phys. Rev. Accel. Beams, vol. 23, p. 044601, 2020.
doi:10.1103/PhysRevAccelBeams.23.044601

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-WEPOMS046

MC5: Beam Dynamics and EM Fields

D11: Code Developments and Simulation Techniques

WEPOMS046

2357

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I


