
UFO, A GPU CODE TAILORED TOWARD MBA LATTICE OPTIMIZATION
M. Carlà∗, M. Canals, ALBA-CELLS, Barcelona, Spain

Abstract
The complexity of multi-bend achromatic optics is such

that computational tools performance has become a domi-
nant factor in the design process a last generation synchrotron
light source. To relieve the problem a new code (UFO) tai-
lored toward performance was developed to assist the design
of the ALBA-II optics. Two main strategies contribute to
the performance of UFO: the execution flow follows a data
parallel paradigm, well suited for GPU execution; the use of
a just-in-time compiler allows to simplify the computation
whenever the lattice allows for it. At the core of UFO lies a
parallel tracking routine structured for parallel simulation
of optics which differs in some parameters, such as magnet
strength or alignment, but retains the same element order,
reflecting the scenario found in optimization processes, or
when dealing with magnetic or alignment errors. Such an
approach allows to take advantage of GPUs which yield
the best performance when running thousands of parallel
threads. Moreover UFO is not limited to tracking. A few
modules that rely on the same tracking routine allow for
the fast computation of dynamic and momentum aperture,
closed orbit and linear optics.

INTRODUCTION
Single particle tracking is at the base of many optimiza-

tion tasks frequently encountered during the development
and tuning of lattices for light sources. Dynamic and mo-
mentum aperture optimizations are typical examples that
can take advantage of a fast single particle tracking routine.
Other use cases that can also benefits from a fast tracking rou-
tine are closed orbit and linear optics function computation,
required respectively for orbit correction and optics match-
ing. Traditionally these optimization tasks are carried out
on large computer clusters by means of parallel optimization
algorithms such as MOGA [1,2]. However in recent time,
some projects [3,4] moved the computational burden to ded-
icated arithmetic processors (GPU), providing competitive
performances at reduced costs. While these projects aims
to provide a rather general purpose optics tool in an easy to
use environment, it is possible to improve substantially the
performances by tailoring the code specifically toward the
optimization of electrons ring lattices, renouncing to some
flexibility and ease of use by taking advantage of two main
points:

• Radiation damping limits the number of turns required
for stable aperture computation to around 1000 turns

• The optimization procedure (e.g. MOGA) requires to
compute several variation of the same optics, that can
be computed in parallel on a GPU

∗ mcarla@cells.es

Generate an OpenCL
representation of the
lattice (pass method)

User inputs the list of
simulation parameters User inputs

 a MAD-X
style lattice

 The pass method is embedded in an
OpenCL function to solve a specific task
 (e.g. DA, closed orbit...)

The kernel is compiled for a
 specific back-end
 (e.g. GPU, CPU)

The code is executed and
 data returned

User inputs 
parameters
value

Results

Figure 1: UFO working diagram.

Based on these assumption it was possible to develop an
Utterly Fast 5D Optics code (UFO) [5] targeting electron
rings optimization. The code was then characterized in terms
of accuracy and performances by running simulations on a
candidate multibend achromat lattice for ALBA2 [6] with
alignment errors in each element.

EFFICIENT TRACKING ON GPU
The task of tracking thousands particles fits well the typ-

ical GPU architecture, where a single (or a small number)
dispatch unit sends instructions to a group of computational
units which therefore execute the same program in parallel.
To ensure good performances code, no branching is allowed;
otherwise different instruction flows would be required for
each computational unit, a condition not allowed by the GPU
architecture. In case of branching the different branches are
executed sequentially resulting in performances penalties.

This requirement is easily met when tracking a bunch of
particles through a lattice: every particle undergoes the same
order of operation as any other, being the lattice identical for
all of them. Also, when tracking particles through different
variations of the same lattice, the condition is still met, as
long as the order of the elements is maintained among the
different lattice variations. The ability to simulate multiple
lattices at the same time is of critical importance, in fact it
would be difficult otherwise to keep a GPU with thousands
of computational units under a high workload when dealing
with a simulation of only 1000 particles for 1000 turns, as in
the case of a typical electron dynamical aperture simulation.

Figure 1 shows the execution flow of UFO. The user is
required to input a lattice (in a MAD style format) and a
list of parameters (e.g. particle coordinates, magnet length,
strength...). UFO generates an internal representation of

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-WEPOMS043

WEPOMS043C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

2346

MC5: Beam Dynamics and EM Fields

D11: Code Developments and Simulation Techniques



the lattice integrator in OpenCL language [7]. Then, the
integrator is embedded in a function specific for the task to
be carried out (e.g. dynamic aperture, closed orbit...) and
compiled for a specific GPU or CPU back-end. Finally, the
user invokes the execution of the task, and only at this time
the value of each parameter is specified independently for
each particle.

Compiling the integrator at run-time provides a chance
for some optimizations that otherwise would be complicated
to implement. An example is the case of a succession of
linear elements (drifts and quadrupoles) that most modern
compilers are able to optimize as a single linear transforma-
tion, or the precomputation of expressions that depends on
constants only. This is the case when the parameters of an
elements are not specified as per particle parameters and
therefore part of the integrator can be calculated a priori.
Note that while compiling the integrator is a time consuming
process it is required only once.

TRADING ACCURACY FOR SPEED
Since UFO aim to provide accurate results for short time

integration (i.e. 1000 turns), it is possible to trade some
accuracy to speed-up even more the computation, this is
achieved through two devices: by using an approximated
integrator and by using a 32 bit floating point representation
of variables.

Approximated Integrator
Different approaches has been developed to take into ac-

count relativistic effects. For example MAD-X/PTC ap-
proximates thick elements with a succession of thin ones
interleaved by drifts that can be solved with an exact integra-
tor. This approach allows for very accurate results at cost
of performances, in fact an accurate solution is achieved
only with a very fine slicing. The effect of using a purely
classical integrator has been characterized by running a typ-
ical DA simulation, the results have been compared against
the one provided by MAD-X/PTC with the exact relativistic
Hamiltonian option switched on. As shown in Figure 2, a
discrepancy between the two codes is visible but limited.
About 5% of the stable particles are incorrectly tracked for
the on-energy case, increasing to 10% in the off-energy case.

32- vs 64-Bit Variables Representation
GPU hardware is optimized mainly for integer and 32-bit

floating point computations, therefore by strictly sticking
to a 32-bit variables representation, it is possible to obtain
a considerable performance gain at cost of very mild ac-
curacy penalties. Figure 3 shows the comparison of the
dynamic aperture computed with 32 and 64 bit variables, in
this case 3% of the stable particles are incorrectly tracked
when switching to 32 bit.

It is worth noting that while most of the CPU follows
strictly the IEEE-754 floating point standard this is not the
case for GPU which usually tend to use less accurate approx-
imation in order to speed up computation, therefore some

-10.0 -5.0 0.0 5.0

x [mm]

10.0

7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

y
 [

m
m

]

10.0

-10.0 -5.0 0.0 5.0

x [mm]

10.0

7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

y
 [

m
m

]

10.0

Figure 2: Comparison of on-energy (top) and 3% off-energy
(bottom) dynamic aperture computed with UFO and MAD-
X/PTC with exact relativistic Hamiltonian. Each marker
shows the initial transverse coordinate of an electron. Elec-
trons found stable or unstable by both codes are shown re-
spectively as red or blue markers, electrons stable in MAD-
X/PTC and unstable in UFO are shown in yellow, while
black marker are the ones stable for UFO but unstable for
MAD-X/PTC.

Table 1: Four OpenCL Backends Under Test
Base clock Cores

Intel i5-8400 2.8 GHz 6
Intel Xeon Gold 6136 3.0 GHz 24
Nvidia Quadro P600 1329 MHz 384
Nvidia Tesla T4 585 MHz 2560

minor difference between CPU and GPU computations can
be observed even when using the same variable format.

BENCHMARKING
Four different hardware configurations has been used to

test UFO performances, including high-end and low-end
GPUs and CPUs. The main characteristics of the 4 configu-
rations are shown in Table 1.

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-WEPOMS043

MC5: Beam Dynamics and EM Fields

D11: Code Developments and Simulation Techniques

WEPOMS043

2347

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x [mm]

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

y
 [

m
m

]

Figure 3: Comparison of dynamic aperture computed with
UFO using 32 or 64 bit floating point format. Electrons
found stable or unstable in both simulations are shown re-
spectively as red or blue markers, electrons stable in the
32-bit simulation and unstable in the 64 one are shown in
yellow, while black marker are the ones stable for 64 bit but
unstable for 32 bit.

101 102 103 104

Parallel threads #

102

103

104

Pa
rti

cle
s /

 s

i5 Xeon P600 T4

Figure 4: Dynamic aperture benchmark. Different number
of particles are tracked in parallel on the 4 different hardware
configurations. The test is repeated using 32 (solid lines) and
64 (dashed lines) bit variables. In the CPU tests a number
of parallel threads equals to the number of CPU cores is
always used, since this is the best performance condition
and OpenCL does not allow to change easily this setting.

In a first benchmark, the 4 different set-up are tested for
performances in a typical dynamical aperture computation.
The test is repeated using 32- and 64-bit variables. As shown
in Fig. 4, using 32-bit variables results in a remarkable per-
formance improvement for the GPUs, while no difference is
observed for the CPUs.

Furthermore, it is evident how to achieve good perfor-
mance it is crucial to feed the GPU with enough parallel
computation to keep all the core saturated, the experiment
shows that the best condition is met when the number of
parallel tracked particle is a few times the number of GPU
cores. The cause is attributed to the inability to keep the
cores saturated when running only one program at a time, in

101 102 103 104

Parallel threads #

102

103

104

Cl
os

ed
 o

rb
it 

/ s

i5 Xeon P600 T4

Figure 5: Closed orbit benchmark. Different number of
particles are tracked in parallel on the 4 different hardware
configurations. The test is repeated using 32- (solid lines)
and 64- (dashed lines) bit variables. In the CPU tests a num-
ber of parallel threads equals to the number of CPU cores
is always used, since this is the best performance condition
and OpenCL does not allow to change easily this setting.

fact certain operations can require several instruction cycles
and therefore can be convenient to interleave a few simula-
tions, that is achieved when simulating a number of particle
multiple of the number of cores. Testing has shown that
for best performances, the number of simulated electrons
should be chosen between 3 and 5 times the number of cores
depending on the specific hardware.

The results of a second benchmark to test the perfor-
mances for closed orbit computations are shown in Fig. 5.
Also in this case results similar to the dynamic aperture
benchmark are observed.

CONCLUSION

UFO is a tracking code developed from scratch with elec-
tron ring optimization in mind. The here presented bench-
marks show how a considerable performance boost can be
achieved by introducing some physics and numerical approx-
imation, which however are considered acceptable especially
in the context of the initial design phase of an electron ring.
Furthermore it was shown that by running UFO on a single
high-end GPU it is possible to achieve a level of perfor-
mances equivalent to the one provided by a small/medium
class computer cluster. UFO is under active development:
higher order integrator and full 6D simulations are currently
under test.

ACKNOWLEDGEMENTS

The authors would like to thank Pau Carnicer Heras and
Jordi Salabert Quintana from the ALBA computing section
for setting up the GPUs used in this test, Zeus Martí and
Gabriele Benedetti from the ALBA beam dynamics group
for the fruitful discussions and for supporting the idea.

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-WEPOMS043

WEPOMS043C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

2348

MC5: Beam Dynamics and EM Fields

D11: Code Developments and Simulation Techniques



REFERENCES
[1] L. Yang, Y. Li, W. Guo, and S. Krinsky, “Multiobjective opti-

mization of dynamic aperture,” Phys. Rev. ST Accel. Beams ,
vol. 14, p. 054001, 2011.
doi:10.1103/PhysRevSTAB.14.054001

[2] M. P. Ehrlichman, “Genetic algorithm for chromaticity cor-
rection in diffraction limited storage rings,” Phys. Rev. Accel.
Beams, vol. 19, no.4, p. 044001, 2016.
doi:10.1103/PhysRevAccelBeams.19.044001

[3] R. De Maria et al., “SixTrack project: Status, runtime environ-
ment, and new developments,” in Proc. ICAP’18, Key West,
FL, USA, May 2018, pp. 172-178.
doi:10.18429/JACoW-ICAP2018-TUPAF02

[4] J. King, I. Pogorelov, K. Amyx, M. Borland, and R. Soliday,
“Current Status of the GPU-accelerated ELEGANT,” in Proc.
IPAC’15, Richmond, VA, USA, May 2015, pp. 623-625.
doi:10.18429/JACoW-IPAC2015-MOPMA035

[5] UFO github: https://github.com/mcarla/ufo

[6] G. Benedetti et al., “A distributed sextupoles lattice for the
ALBA low emittance upgrade” in Proc. IPAC’21, Campinas,
SP, Brazil, May 2021, pp. 2762–2765.
doi:10.18429/JACoW-IPAC2021-WEPAB074

[7] Khronos Group - OpenCL:
https://www.khronos.org/opencl/

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-WEPOMS043

MC5: Beam Dynamics and EM Fields

D11: Code Developments and Simulation Techniques

WEPOMS043

2349

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I


