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Abstract

In the approximation where the plasma is considered as
a fluid, basic relations are derived to describe the plasma
wave driven by an ultra-intense laser pulse. A set of partial
differential equations is obtained. It is then numerically
solved to calculate the resulting 3D electric field structure
that can be used as accelerating cavities for electrons. The
laser strength parameter is varied to investigate regimes from
weakly nonlinear up to total cavitation where all the initial
electrons of the plasma are expelled.

INTRODUCTION

The high-gradient plasma-based acceleration is a growing
research effort with world-wide ongoing experiences. This
effort [1, 2], that can be broken down into different configu-
rations such as laser wakefield accelerator (LWFA), plasma
beat wave accelerator (PBWA) or beam-driven plasma wake-
field acceleration (PWFA), is of great interest because of
the extremely large acceleration gradients achievable. When
this technology will be mature, it is envisioned an important
reduction of size and cost of future accelerators.

Plasma-based acceleration techniques have reached a
maturity level which now makes it possible to envisage
laser-plasma accelerators with strong requirements for high-
quality beams [3]. Massive simulations to optimize the
accelerating structure, i.e. the accelerating and focusing
electric field profiles, will have to be considered, as for con-
ventional radio-frequency accelerators. PIC (Particle-in-
Cell) simulations depict the acceleration physics in the most
realistic manner, but ask for significant computation time.
They should be oriented beforehand by rough physics con-
siderations, even when the latter are less precise and less
realistic.

In this paper, we explore how far it is possible to progress
in the way to characterize the accelerating structure with-
out having to use PIC techniques. The fluid approximation
is adopted, together with the Quasi-Static Approximation
(QSA), and the unchanged laser amplitude approximation.
Relativistic linear, then nonlinear regimes will be studied,
in 1D then 2D configurations.

This paper is organized as follows: The first section re-
calls basic equations of the fluid system; the second section
describes the linear regime; and the third section deals with
the nonlinear regime.
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STARTING EQUATIONS
The starting classical equations to be solved are, respec-

tively, the continuity equation, the Lorentz Force equation,
the electromagnetic wave equation and the Poisson equation

𝜕𝑛
𝜕𝑡 + ∇ ⋅ (𝑛v) = 0 , (1)

d𝛾𝑚v
d𝑡 = 𝑒∇Φ + 𝑒𝜕A

𝜕𝑡 − 𝑒v × (∇ × A) , (2)

ΔA − 1
𝑐2

𝜕2A
𝜕𝑡2

= 𝑒𝑛v
𝑐2𝜖0

− 1
𝑐2

𝜕∇Φ
𝜕𝑡 , (3)

ΔΦ = 𝑒𝑛
𝜖0

, (4)

with 𝑒, 𝑚 the elementary charge and mass, 𝑛 = 𝑛0 + 𝛿𝑛
the electron plasma density, v the electron velocity, Φ the
scalar potential of the wakefield and 𝜖0 the permittivity of
vacuum. Pressure terms are ignored. The Coulomb gauge
∇ ⋅ A = 0 is used, with A the vector potential associated
with the laser field. In this paper, the normalized vector
potential a = 𝑒A/(𝑚𝑐) and the normalized scalar potential
𝜙 = 𝑒Φ/(𝑚𝑐2) are used. The QSA is used to the change of
frame 𝑡 → 𝜏 and 𝑧 → 𝜉 + 𝑣g𝑡, with 𝑧 the longitudinal axis,

𝑣g = 𝑐√1 − 𝜔2
pe/𝜔2

0 the laser group velocity, 𝑘pe = 𝜔pe/𝑣g,
𝜔pe the plasma frequency and 𝜔0 the laser frequency.

LINEAR REGIME
The fluid approach is one of the first theoretical approach

used to describe the LWFA. The linear theory was developed
independently by two teams [4, 5] at the end of the 1980s.
Both teams took advantage of the QSA to simplify the laser-
plasma interaction. The wakefield (or its scalar potential)
is then computed inside and after the laser pulse. The non-
relativistic linear theory used in this section rests on [4].

The laser is assumed unperturbed, therefore, A is a known
function in time and space. Since, in an underdense plasma,
A varies rapidly in time compared to 𝑛, the time dynamics of
𝐴2 is averaged to 1/2 before applying the quasistatic approx-
imation. The above dynamics equations are linearized at
the first order, except for laser part of the velocity, which is
taken to the second order (where occurs the ponderomotive
force). Therefore, the motion equation becomes

𝜕v
𝜕𝑡 = 𝑒∇Φ

𝑚 − 𝑐2∇𝑎2

4 . (5)

With a small rearrangement of the three above equations,
it can be shown that the evolution of Φ behave as a forced
harmonic oscillator

𝜕2Φ
𝜕𝑡2

+ 𝜔2
peΦ = 𝑐2𝑛0𝑒𝑎2

4𝜖0
. (6)
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Figure 1: (Color online) Blue colormap corresponds to the
2D normalized electron plasma perturbed density 1+𝛿𝑛/𝑛0
from Eq. (7). The cylindrical symmetry is assumed. The
black curves corresponds to the laser intensity 𝑎2. The dots
density is a representation of the increasing laser intensity.
The laser pulse goes from left to right.

The solution is known to be [4]

𝜙(𝑟, 𝜉) = −𝑘pe

∞
∫
𝜉

𝑎2(𝑟, 𝜉′)
4 sin(𝑘pe(𝜉 − 𝜉′)) d𝜉′ . (7)

Equation (7) is the culmination point of the linear theory,
since with it, one can express both the wakefield and the
electron density of the system.

The solution of Eq. (7) depends on the form of the laser
pulse. For a 2D cylindrical geometry, the laser intensity
𝑎2(𝑟, 𝜉) = 𝑎2

0
2 exp(−2𝑟2

𝑤2
0

) cos2(𝜋𝜉
𝐿 ) , ∀𝜉 ∈ [−𝐿/2, 𝐿/2]

is chosen. Figure 1 displays the electron density obtained
using the Poisson equation on Φ. Figure 2 displays the
resulting two components in 𝑟 and 𝜉 of the wakefield.

NONLINEAR REGIME
1D Relativistic Case

The 1D nonlinear relativistic theory of the LWFA was
introduced [6–8] with an explicit solution, a few years after
the linear regime. It is inspired by a more general nonlinear
wave theory [9]. This section rests on [2].

The 1D equations to be solved, from Eqs. (1)-(4), are

𝜕𝛿𝑛
𝜕𝑡 + 𝜕

𝜕𝑧((𝑛0 + 𝛿𝑛)𝑣𝑧) = 0 , (8)

d𝛾𝑚𝑣𝑧
d𝑡 = 𝑒𝜕𝑧Φ − 𝑚𝑐2

2𝛾
𝜕𝑎2

𝜕𝑧 , (9)

𝛾𝑣𝑥 = 𝑐𝑎 , (10)
𝜕2Φ
𝜕𝑧2 = 𝑒𝛿𝑛

𝜖0
. (11)

Using the QSA yields to 𝛾(𝑣g𝑣𝑧/𝑐2 −1)+Φ = −1, 𝛿𝑛/𝑛0 =
𝑣𝑧/(𝑣g − 𝑣𝑧) and 𝛾2(1 − 𝑣2

𝑧 /𝑐2) = 1 + 𝑎2. This allows us to

Figure 2: (Color online) Blue and red colormap (upper panel)
corresponds to the 2D 𝐸𝑧/𝐸0 component of the wakefield
from Eq. (7). Gold and purple colormap (lower panel) cor-
responds to the 2D 𝐸𝑟/𝐸0 component of the wakefield. The
area where 𝐸𝑧 < 0 is the accelerating location for electrons.
The area where 𝐸𝑟 > 0 is the focusing location for electrons.
The black square is the laser influence. The laser pulse goes
from left to right.

reexpress the Poisson equation [2]

𝜕2𝜙
𝜕𝜉2 = 𝑘2

pe𝛾2
g

⎛⎜⎜⎜
⎝

𝑣g
𝑐

(1 + 𝜙)𝛾g

√(1 + 𝜙)2𝛾2
g − 𝑎2 − 1

− 1⎞⎟⎟⎟
⎠

, (12)

with 𝛾g = (1 − 𝑣2
g/𝑐2)−1/2. Note that, 𝑎2(𝜉) is a known

function independent of 𝜙. Equation (12) is the culmination
point of the nonlinear theory, since with it, one can express
both the wakefield and the electron density of the system.
Equation (12) can be solved numerically using an iterative
method with initial values. Figure 3 displays the electron
plasma density, longitudinal field and scalar potential that
are recovered.

2D Relativistic Case
The 2D (or 3D) nonlinear theory was investigated several

times [1, 10, 11]. Our immediate goal is to solve the 2D
nonlinear relativistic case, namely, to solve Eqs. (1)-(4).
Two approaches are considered.

The first approach relies on a finite difference model. The
system of differential equations to be solved are the con-
tinuity equation, the Lorentz Force equation, the Poisson
equation and the wave equation (for the evolution of A).
Those equations are reformulated in the 2D cylindrical ge-
ometry and with the QSA. For the sake of simplicity, the
laser pulse is unperturbed. Through a Taylor expansion, the
expression of first, second and mixed derivatives of each
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Figure 3: (Color online) Laser intensity, scalar potential,
longitudinal electric field and density perturbed from Eq.
(12) in the 1D nonlinear regime.

unknown are re-expressed on a 2D mesh (𝑟, 𝜉). Thanks to
this, the system is reframes by linear matrix equations. It
uses large sparse matrices that can be solved using an itera-
tive method under investigation. Boundary conditions are
Φ → 0 when 𝑟 → ∞ and Φ = 0 when 𝜉 > 𝐿.

The second approach considered relies on semi-
Lagrangian methods. The system of differential equations
to be solved are the electromagnetic Vlasov equation and
the Poisson equation. Those equations are reformulated in
the 2D cylindrical geometry (𝑟, 𝜉) and with the QSA. Since
the QSA removes the time dependency of the distribution
function, it is decided to solve the Vlasov equation on the 𝜉
variable, instead of 𝑡. Thus, the discrete distribution function
𝑓 𝑘(𝑟, 𝑣𝑟, 𝑣𝜉), at each 𝑘 → 𝜉, is solved using a 1D2V Vlasov
algorithm based on the classical Cheng and Knorr approach.
The same boundary conditions as for the first approach are
used.

CONCLUSION
Within the fluid, QSA, and unchanged laser amplitude

approximations, the accelerating structure can be described
(i) in the linear regime by integrating a function, (ii) in the
nonlinear 1D regime by solving a differential equation, and
(iii) in the nonlinear 2D regime by solving a system of cou-
pled partial differential equations. These results remain to

be compared to PIC simulations where the laser diffraction
and depletion, and the beam loading can be taken into ac-
count, in order to specify their limits. Based on successful
preliminary results, it is expected that this approach will be
fast enough to allow fast parameter analysis.
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