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Abstract

The Facility for Rare Isotope Beams (FRIB) at Michi-

gan State University produced and identified the first rare

isotopes demonstrating the key performance parameter and

completion of the project. An important next step toward

FRIB user operation includes fast tuning of the Front End

(FE) decision parameters to maintain optimal beam optics.

The FE consists of the ion source, charge selection sys-

tem, LEBT, RFQ, and MEBT. The strong coupling of many

ion source parameters, strong space-charge effects in multi-

component ion beams, and a not well-known neutralization

factor in the beamline from the ion source to the charge se-

lection system make the FE modeling difficult. In this paper,

we present our first effort toward the Machine Learning (ML)

application for automatic control of the beam exiting the FE.

INTRODUCTION

FRIB houses a powerful heavy-ion linear accelerator to

produce wide spectrum of rare isotope species of variety

of charge states [1–3]. Such an unprecedented capability

requires a frequent switch of primary beam ion species fol-

lowed by optics tuning in FE. Therefore, fast FE beam optics

tunning as well as maintaining the beam quality is crucial

for the mission. We have been successfully utilizing the Nel-

derMead [4] – a simplex method – for automated fast tuning

of FE upon initialization of the beam commissioning. This

optimization algorithm decides the next optimal decision

parameters to be evaluated based only on a few data points

that form a simplex over the decision parameter domain. If

we can exploit all the data points we visited since the start

of the optimization, we may get more sample-efficient1 de-

cision. Furthermore, if the all the historical (or archived)

data from past operations is somewhat consistent2, we may

able to exploit it to enhance the sample efficiency even more.

In this regard, we develop and test the prior-mean-assisted

Bayesian optimization (pmBO) where the prior model is

trained over the historical (or archived) data. We are also

creating surrogate models of physics simulation of FE for
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1 By “sample efficiency”, we mean a faster optimization in terms of the

number of objective evaluations. This does not necessarily mean a faster

optimization in terms of the wall clock.
2 Here we mean the consistency of historical (or archived) data in a sense

that the present machine status in terms of the relationship between the

decision parameters and the objective of interest is not very far from most

of the past machine statues (due to machine drift) when the data was

collected.

fast and large data collection purposes so as to realize the

application of pmBO for FE tuning.

PRIOR MEAN ASSISTED BAYESIAN

OPTIMIZATION

The ML methods for the online beam tuning that are

reported until today may be in largely two categories: re-

inforcement learning (RL) and surrogate model assisted

optimization (SMAO) [5–7]. The Bayesian optimization

(BO) belongs to the latter category. In general, compared

to RL, SMAO is more sample efficient but less robust to

the machine drift, and heavier in numerical complexity [8].

Furthermore, SMAO is, generally, not suitable for continu-

ously tunning due to the assumption of static problems and

the numerical complexity3. Nevertheless, we find SMAO,

(especially BO) is a good fit for our purpose due to the ability

to incorporate the historical (or archived) data naturally in

terms of the prior model as well as the sample efficiency.

And the numerical complexity problem can be relieved if

optimization converges in a few steps thanks to the good

prior model. Finally, once the optimization converged, we

can use either a pre-trained (off-policy, offline) RL or tra-

ditional control algorithms like the Extremum-Seeking for

continuous tunning for adaption to the machine drift [9].

In this section, we present how we model the data reflect-

ing the effect of the machine drift, and exploit the data for

optimization on two test problems: Rosenbrock and Rastri-

gin functions:

ℜ���� (�1, �2, . . . , ��) =

�−1︁

�=1

(

��+1 − �2
�

)2

+
(1 − ��)

2

100

ℜ���� (�1, �2, . . . , ��) =

�−1︁

�=1

�2
� − cos (2���)

�
− 1 (1)

These are commonly used objective functions for bench-

marking optimization algorithms. Figure 1 shows them for

the 2-dimensional case.

Historical Data Model
We assume that the system dynamics in terms of the

objective � (·) of interest is fully describable by the deci-

sion parameters ���������, and known ������ and unknown

�������� environmental parameters except for small noises

� ∼ N (0, 0.01):

� = � (���������; ������, ��������) + � (2)

3 It involves with the surrogate model training and optimization over the sur-

rogate model or an acquisition function that is a function of the surrogate

model.
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Figure 1: Rosenbrock 2D (left) and Rastrigin 2D (right).

where � is the observed objective. For example, ���������
may include beam steering magnets, ������ may include

magnet settings that are not included in ���������, and

�������� may include unknown injected beam condition,

magnet misalignments, calibrations and etc. This way, we

are modeling the machine drift over time in terms of the

variation of the unknown environmental parameters.

We write the full historical data set by:

D � ��� = {�, ���������, ������, ��������} (3)

and distinguish it from the data that can be recorded:

D = {�, ���������, ������} (4)

For test purposes, we generate a hypothetic historical data

by uniform random sampling over the input domain [−2, 2]�

of the Rosenbrock and Rastrigin functions where � is the

dimension of the input domain. And assign decision param-

eters and known and unknown environmental parameters

over the input domain.

Prior Mean Model
We train a neural-network (NN) �� , where � is the NN

parameters, to represent the prior mean model as a function

of ��������� and ������ such that

� = argmin
�

ED (�� (���������, ������) − �)2 (5)

To illustrate, we visualize a prior mean model for 2-

dimensional Rosenbrock function assuming 1 decision pa-

rameter �1 = ��������� and 1 unknown environmental pa-

rameter �2 = �������� such that

� (���������; ��������) = ℜ���� (���������, ��������)

A hypothetic historical data D � ��� is shown on the left plot

of Fig. 2. Since only �1 is known, our prior mean model

trained over D is 1-dimensional. Note that the prior mean

model shown on the right of the Fig. 2 captures the overall

shape of the projections (onto �1) of the 2D Rosenbrock.

Although it may depend on the problem at hand, this ex-

ample illustrates that the dynamics of the objective in terms

of ��������� can be approximately captured into the prior

mean model even if the training data was taken from various

machine status ( that is modeled by change of �������� ).

Figure 2: Left: hypothetic historical data D � ��� shown in

red dots. Background color represents ground truth 2D

Rosenbrock. Red lines correspond to the projections shown

on the right plot. Right: Trained prior mean model (orange)

over D and projections (blue) of the 2D Rosenbrock onto

��������� at fixed �������� ∈ D � ���

This allows us to train a posterior model, conditioned to the

prior mean model �� , that can adapt to the current machine

status (i.e. current values of ��������) using fresh data that

is collected on the fly during the optimization. Then SMAO,

with the posterior as the surrogate model, can quickly guide

us to the next decision parameters for evaluation.

Benchmark
For better confidence, we benchmark pmBO, BO, and

NelderMead with 100 trials. For each trial, the initial deci-

sion parameters and environmental parameters are randomly

chosen. The result for 2 dimensional Rosenbrock with 1

decision parameters, 1 unknown environmental parameters

is shown in Fig. 3. The results for 14 dimensional Rosen-

brock and Rastrigin functions with 10 decision parameters, 2

known and 2 unknown environmental parameters are shown

in Fig. 4 and Fig. 5 respectively. In addition to these, in

all other benchmarks we did with different combinations of

parameters’ dimensionality, pmBO 4 outperformed 5 vanilla

BO that is not aware of the historical data.

SURROGATE MODEL OF SIMULATION

The reliability of the prior mean model depends on the

training data distribution and size. For example, for a 10-

dimensional problem, one may need about 106 data points

(assuming 4 points in each dimension). If the experimental

data collection rate is about 5 seconds, the 1 million data

points require 2 months of operation. In addition, machine

operation tune is often limited to near-optimal settings which

prevent the generality of the historical data distribution. In

this regard, we are creating surrogate models of physics

simulations. In FE simulation, nearly half of the computation

time is spent in RFQ. As a visual illustration, we created a

longitudinal aperture surrogate model for RFQ as in Fig 6.

4 We used the size of the training data (which represent hypothetic histor-

ical data) for the prior mean model to be min(4� , 106) where � is the

dimensionality of the problem so that the data size is exponential to the

dimensionality while limited to 1 million.
5 NelderMead performance strongly depends on the initial size of the sim-

plex. Here, we used 0.05% of the bounds of each dimension to create

points of the initial simplex around the initial decision parameters.
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Figure 3: Benchmark of pmBO, BO, and NelderMead for 2D

Rosenbrock problem assuming 1 decision and 1 unknown en-

vironmental parameter. 100 trials of optimization performed

while �������� are randomly chosen and fixed during each

optimization. The thick line is the average over all the trials.

The shade represents the trial population from 20% to 80%.

The width of the shade is large because of different values

of ��������. “GPLCB” represents BO with the Gaussian

Process surrogate model and Lower Bound Limit acquisition

function. “GPLCBwPrior” represents pmBO.

Figure 4: Benchmark: 14-dimensional Rosenbrock (10

decision, 2 known, 2unknown environmental parameters).

100 trials of optimization performed while ������, and

�������� are randomly chosen and fixed during each opti-

mization.

Note also that, if simulation time is about 1 minute, the 1

million data requires 1 year of computation with a single

CPU. To be practical in terms of the number of simulations,

we reduce the dimensionality by splitting the FE, section

by section, so that each section contains only 7 or 8 tunable

parameters. Such a simulational surrogate model can be used

to generate low-fidelity (in the sense that the real machine

may be different from the physics model) data. The high-

fidelity data that is archived from real machine operation

may be used to correct the prior mean model that is trained

using low-fidelity data. Further details and results regarding

the simulational surrogate model will be reported elsewhere.

Figure 5: Benchmark: 14 dimensional Rastrigin (10 deci-

sion, 2 known, 2unknown environmental parameters).

Figure 6: Longitudinal RFQ aperture surrogate model in

black and white and the beam density.

SUMMARY AND CONCLUSION

In an effort toward fast tunning of FRIB FE, we de-

veloped and tested prior-mean-assisted Bayesian optimiza-

tion (pmBO) on arbitrary dimensional test functions: Rosen-

brock and Rastrigin functions. We modeled hypothetic his-

torical data over the test functions in consideration of ma-

chine drift over time. Throughout our tests, we observed

pmBO outperforming vanilla BO. Such success is condi-

tional on enough data size for the prior mean model training.

We are creating surrogate models of physics simulations for

FRIB FE so as to generate large data for the high-dimensional

prior mean model. Further details of the simulational surro-

gate modeling will be reported elsewhere.
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