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Abstract

Real-time beam descriptive data such as emittance, enve-
lope and loss, are central to accelerator operations, including
online diagnostics, maintenance and beam quality control.
However, these cannot always be obtained without disrupt-
ing user runs. Physics-based simulations, such as particle
tracking codes, can be leveraged to provide estimates of
these beam descriptors. However, such simulation-based
methods are computationally intensive requiring access to
high performance computing facilities, and hence, they are
often non-realistic for real-time purposes. The proposed
work explores the feasibility of using machine learning to
replace these simulations with fast-executing inference mod-
els based on surrogate modelling. The approach is intended
to provide the operators with estimates of key beam proper-
ties in real time. Bayesian optimisation is used to generate
a synthetic dataset to ensure the input space is efficiently
sampled and representative of operating conditions. This is
used to train a surrogate model to predict beam envelope,
emittance and loss. The methodology is applied to the ISIS
MEBT as a case study to evaluate the performance of the
surrogate model.

INTRODUCTION

An ultimate goal at accelerator facilities is to produce a
high quality, efficient and reliable beam. However, due to
the quantity and complexity of the systems involved, sig-
nificant operator intervention is required to maximise these
objectives. If key beam descriptors such as the envelope,
emittance, bunch length and beam loss levels are known, it
is easier for operators to identify and rectify the cause of
a problem to restore the machine back to optimum perfor-
mance levels. In reality, accessing these descriptors can be
difficult for a variety of reasons. The measurements may be
physically impossible to take, require disruptive measure-
ments to the beam which would result in user down-time
or there may be limited space available for the necessary
diagnostic equipment.

Physics simulations can be used to estimate these beam pa-
rameters given a set of control parameters. Their dependence
on fast Fourier transforms (FFTs) makes them impractical
for use in real-time applications as a single simulation can
take on the order of days to complete.

A possible solution is to make use of data-driven tech-
niques such as machine learning to replicate these expensive
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calculations at much shorter timescales. These models can
then be linked into control systems to produce real-time
estimates for key beam descriptors to allow operators to
diagnose and respond to problems more accurately.

For the purpose of this study, we take the new Medium
Energy Beam Transport (MEBT), to be installed in the ISIS
linear accelerator [1] as part of an ongoing upgrade [2] ,as a
case study. As ISIS has evolved organically over time [3], the
physical space available for the MEBT is limited; even more
so for additional diagnostic equipment. It is therefore an
ideal candidate to test the practicality of a surrogate model.

DATA GENERATION

For a virtual diagnostic to be useful, the input space used
to train the machine learning model must be comparable
to that seen during operation. We therefore define the con-
trollable parameters in the MEBT (cavity and quadrupole
strengths) as Gaussian variables from which we can sample
to generate the input space. The mean of each Gaussian is
the optimum setting found during the MEBT’s design phase,
while the standard deviation is calculated using a minimum
and maximum operating range that is assumed to represent
95% of the data.

Parameters over which the machine operators have no
control, such as the incoming beam position, emittance and
beam current are defined as uniform random variables that

can take any value between a given maximum and minimum. :

Combining both sets of inputs results in 17 different input
features for the machine learning model.

Randomly combining accelerator machine settings will
inevitably lead to unfavourable combinations which lead
to losses well above the permitted operational levels. To
circumvent this issue we intelligently sample the input space
using a Bayesian optimisation to select combinations of
inputs that would result in low losses that reflect expected
operating conditions more accurately. As running each new
set of inputs selected by the Bayesian optimisation loop is
embarrassingly parallel, we were able to generate a data set
of 2136 simulations using the lume-astra [4] Python interface
to Astra [5] by utilising multiple CPUs

DATA PROCESSING

Each simulation used a different combination of 17 scalar
input parameters and produces spatial 200 length arrays
of the emittance (€yy;), transverse envelope (o), bunch
length (0;), longitudinal energy spread (AE) and loss along
the length of the MEBT.
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For simplicity, the arrays were converted to scalar values
by reassigning the distance along the MEBT (the z-value) as
one of the inputs, a similar approach to that used by Pestourie
et al [6] to reduce the complexity and dimensionality of the
problem. Applying this transformation allows us to apply
traditional data processing techniques for regression prob-
lems to our data, such as logging, clipping and z-scaling, as
well as expand the number of machine learning architectures
that could be used. This generated a data set of 18 input
values and 6 scalar output values for each of the 200 z-values
along the length of the MEBT, multiplying the size of the
2136 simulation data set by 200.

After the first models were developed using this data set,
it was noticed that increasing the last quadrupole strength
towards the exit of the MEBT would result in the beam
distribution changing near the entrance, a non-physical result.
We diagnosed this as correlations the model was learning
between inputs, potentially introduced by the active learning
process used to generate the data set. To mitigate this effect
we masked the downstream inputs for any given z-value by
setting their value to the mean of the data set.

SURROGATE MODEL

The virtual diagnostic used a simple feed forward neural
network architecture, consisting of a model with 4 branches,
one for each beam ‘descriptor’. Each branch contained 5
layers of 128 nodes followed by 1 layer with 16 nodes and a
final output layer of 1 or 2 nodes depending on the number
of outputs in a given group of descriptors. Each of the
layers was separated by a Dropout layer with a rate of 0.1
for regularisation [7], as well as a Batch Normalisation layer.
The output of each of these branches is concatenated to form
the final output layer of the surrogate.

TensorFlow [8] and Keras[9] implementations were used.
Training minimised the mean squared error over a maxi-
mum of 300 epochs using early stopping and a scheduled
decreasing learning rate with the Adam [10] optimiser.

A baseline model that predicted the mean value for each
output at each z-position achieved a mean squared error of
0.991 on the validation set which consisted of 25% of the
total data set. Our surrogate was able to achieve an error of
0.0275. Predictions for a single simulation (200 data points)
could be generated in 39.6 + 0.9 ms on a i7-10750H CPU.
In our experience it took native Astra 1 day to complete
the same simulation meaning we are able to achieve a time
improvement of more than 6 orders of magnitude.

Table 1: R? values computed from the predicted and true
values for each of the model’s seven outputs

Loss

0.965

Tx

0.995

oy AE
0.988 0.953 0.920 0.995

€x €y oy

0.997

Table 1 shows the results of the model across each of the
outputs. It is evident that the model is able to predict o,
and AE to high level of accuracy, but struggles with €,
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Figure 1: Example output of the virtual diagnostic, predict-
ing the beam loss and o. True output is indicated by the
blue line, while model predictions are given by the orange
line.

and the loss. Figure 1 illustrates the difference in prediction
between the loss and the envelope.

Clearly, surrogate modelling provides a feasible alterna-
tive to physics simulations for predicting beam descriptors
in real time. However, beam behaviour in the live machine
can vary significantly from simulations. In order to evaluate
the true efficacy of the virtual diagnostic, it needs to be in-
tegrated into the control system and validated against live
data. This will not be possible until the MEBT is installed
on the ISIS Linac, but will form the basis of future work.

UNCERTAINTY QUANTIFICATION (UQ)

Both accuracy and model uncertainty are of key impor-
tance in delivering a useful virtual diagnostic for operators,
particularly when using it to inform a decision making pro-
cess. Although Bayesian Neural Networks and Gaussian Pro-
cesses are considered the gold standard in uncertainty quan-
tification, the size of our data set (approximately 320,000
training points) made it impractical to apply these methods
using the computing resources we had available. Instead,
alternatives were evaluated, which consisted of an ensemble
model [11, 12], a dropout model[13] a quantile regression
model [14] and a variance model [15]. In each case, the same
architecture as that of the basic surrogate model was used.
Each technique was evaluated against standard UQ metrics
such as sharpness, dispersion and calibration and negative
log likelihood (NLL), as outlined in Tran et al. [16] to deter-
mine if any of these methods could sufficiently represent the
trustworthiness of our virtual diagnostic.

On first inspection, the results in Table 2 look promising
across all of the models except for the variance model, which
was the only model to predict the mean and variance in one
shot. This suggests that the basic surrogate’s architecture was
not sufficient for this model to be able to learn a generalised
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Table 2: Key metrics for evaluating a model’s ability to quantify its own uncertainty

Model R? RMSE Sharpness Dispersion NLL  Time (s) (1 CPU)
Ensemble 0.976 0.159 0.051 0.051 9.70e5 29.868
Variance 0.923 0.286 0.100 0.211 2.17e6 5.522
Dropout 0.971 0.174 0.053 0.044 1.61e6 29.817
Quantile 0.964 0.197 0.192 0.264 6.27e5 19.949
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Figure 2: Comparison of UQ metrics for the A) ensemble and B) quantile regression models. Blue lines indicate the beam
loss while orange lines represent ox. Error bars in the parity plots indicate the 95% confidence interval predicted by the
model. The solid line in the central plots represents the sharpness while the dotted line represents the dispersion of the data.

representation of the data as well as the other models, which
is reflected in its poor accuracy r esults. However, it showed
promise particularly in its execution times compared to other
models (which rely on repeat executions), so future work
will consist of optimising this architecture to reduce the
overfitting seen during training.

Meanwhile, the ensemble, dropout and quantile regres-
sion models are all able to predict the outputs to a similar
level of accuracy as the model without UQ. As all models
struggle to represent the beam loss and emittances accurately,
comparison of the uncertainty quantification is redundant as
the prediction itself is inaccurate. This is illustrated by the
parity plots of the loss in Figs. 2A and 2B.

Although the low sharpness values across all of the models
look promising initially, closer examination of Fig. 2A and
B shows this is a result of poor calibration. The ensemble
and dropout models are highly overconfident, indicated by
a line falling below the ideal on the right hand side of the
calibration plot in Fig. 2A. In practice, operators should not
trust the model’s assessment of its own confidence, as the
uncertainty in the model is in fact higher than is portrayed. In
contrast, the quantile model suffers from under confidence,
as shown by its calibration curve falling below the ideal line
on the left hand side. Practically, this would be illustrated
by a broad 95% confidence interval around the predictions
which, if seen regularly, would cause operators to disregard
the model’s output.

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33: Online Modeling and Software Tools

These results tell us that while the models are capable
of being used as a virtual diagnostic to predict the beam
descriptors, we are not yet confident enough to deploy any
of the uncertainty quantification methods in practice. Inves-
tigation into recalibration [17] may provide a solution to our
calibration issues in future.

SUMMARY AND OUTLOOK

The present work has illustrated that surrogate modelling
is a viable alternative to physics simulations for providing es-
timates of key beam descriptors in real time to a high degree
of accuracy. However, none of the uncertainty quantifica-
tion techniques explored within the work are suitable for use
by the operators. Subsequent work will involve validating
the efficacy of the virtual diagnostic with live machine data
once the MEBT is installed and investigating alternative UQ
techniques.
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