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Abstract
The LHC transverse feedback system (ADT) provides

bunch by bunch, turn by turn, normalized and digitized beam
position signals from four pick-ups per plane and for each
beam. Together with already existing powerful computer-
based observation systems, this data can be used to recon-
struct in real-time the transverse phase space coordinates
of the centre-of-charges, for each individual bunch. Such
information is extremely valuable for machine operation, or
transverse instability diagnostics.

This paper aims on discussing and evaluating methods
of combining four position signals for such analysis in the
presence of noise and with active transverse feedback. Com-
parisons are made based on the extraction of vital parameters
like the fractional tune or transverse activity. Analytical and
numerical results are further benchmarked against real beam
data.

TRANSVERSE FEEDBACK AND
ADTOBSBOX

During the LHC Long Shutdown II the LHC transverse
feedback system (ADT) [1] was subject to an upgrade of
its Beam Position Monitor (BPM) hardware, aiming for an
improvement of the system’s noise floor [2]. New low-noise
beam position hardware is now available for LHC Run III,
providing independent processing of 16 dedicated pick-ups.
This allows for a total of four beam position streams per plane
and per beam, representing the transverse centre-of-charges
of each individual bunch.

This data is available in real-time to the LHC Transverse
Feedback system for damping and stabilizing the beam, as
well as to the computer-based observation system ADTO-
bsBox [3]. The ADTObsBox is capable of recording and
processing all digital data streams from the available pick-
ups at full data rate (bunch-by-bunch or 40 Msps, with 16 bit
resolution), for instance, to combine the data in real-time
and extracting valuable metrics of the ADT performance
(e.g. transverse activity) or the beam itself (bunch-by-bunch
fractional tune).

One considerably useful representation of transverse mo-
tion is the use of phase space coordinates, readily described
in Ref. [4] as an analytic signal 𝑥[𝑛], expressed as,

𝑥[𝑛] = 𝑦[𝑛] + 𝑗𝑦′[𝑛]. (1)
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Here, the transverse normalized phase space coordinates
𝑦[𝑛] and 𝑦′[𝑛] represent normalized position data respec-
tively the corresponding normalized slope values at turn
index 𝑛.

From the notation in Eq. (1) we can immediately derive
a measure of transverse beam activity, denoted by 𝐴[𝑛], as
the modulus – or amplitude – of the complex vector,

𝐴[𝑛] = abs {𝑥[𝑛]} . (2)

If 𝐴[𝑛] decreases over time then the transverse activity is
considered to be damped, whereas growing values provide
an indication of transverse instability.

Equivalently, the fractional tune, 𝑄[𝑛], follows from
phase space data by observing the phase component 𝜑[𝑛] =
arg {𝑥[𝑛]} of Eq. (1), specifically, the relative phase advance
between consecutive turns, described as,

𝑄[𝑛] = 1
2𝜋arg {𝑥[𝑛 − 1

𝑥[𝑛] } = 1
2𝜋 (𝜑[𝑛 − 1] − 𝜑[𝑛]) . (3)

For the analytic evaluation, we implicitly assume that the
beam is centred in the pick-ups and we observe betatron
oscillations, i.e. (𝑦)2 + (𝑦′)2 = const. Furthermore, for
our assessment, we shall use a damped, complex-valued
harmonic oscillator as beam model, which provides for the
𝑘th beam position monitor at the 𝑛th turn the phase space
coordinates as follows,

𝑥𝑘[𝑛] = 𝐴0𝑒−𝑗𝜙𝑘 (𝛼 ⋅ 𝑒−𝑗𝜔0)𝑛 . (4)

Here, 𝐴0 and 𝜙𝑘 are initial conditions, 𝛼 accounts for
an amplitude decay and 𝜔0 = 2𝜋𝑄𝑓 represents the angular
frequency at the fractional betatron tune 𝑄𝑓.

PHASE SPACE RECONSTRUCTION
In order to satisfy Eq. (1), and by acknowledging that the

ADT Beam Position Monitors readily provide normalized
readings, we are looking for indirect methods to obtain slope
samples from beam position measurements.

In the following, we evaluate two methods for combining
beam position data of four LHC pick-ups, identified as a
spatial and a temporal phase shift in Ref. [5]. The first
combines the information of several beam position monitors
based on their longitudinal distribution in the accelerator,
the later relies on processing the history of recorded beam
position data using filter kernels.
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Spatial Method
This method relates the data measured by two or more

independent beam position monitors at different longitudinal
azimuths. Fig. 1 outlines the case for 𝑁 = 2 signal sources.
For this method, the beam position monitors should have a
betatron phase advance ideally between 60𝑜 < (𝜙2 − 𝜙1) <
120𝑜.
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Figure 1: Spatial phase space reconstruction: in-phase term
𝑦𝐼[𝑛] and quadrature component 𝑦𝑄[𝑛] calculated from vec-
torial rotation and combination of two beam position se-
quences 𝑥1[𝑛] and 𝑥2[𝑛].

For the case of the LHC ADT, the data provided by indi-
vidual beam position monitors 𝑦𝑘[𝑛] are meticulously time-
aligned during setting-up, with index 𝑛 corresponding to the
same bunch data at the same turn. Therefore, using the “Pick-
up Vector Sum” algorithm from Ref. [5] it can be shown
that, choosing appropriate mixing coefficients 𝑎11 and 𝑎12,
the position signal 𝑦𝐼[𝑛] in Fig. 1 of a virtual beam position
monitor can be constructed, such that

𝑦𝐼[𝑛] = 𝑎11𝑦1[𝑛] + 𝑎12𝑦2[𝑛]. (5)

Equivalently, applying the same approach of pick-up sig-
nal mixing, and by taking into account an additional 90𝑜

phase advance compared to the virtual beam position used
for Eq. (5), we obtain the representation of the slope, 𝑦𝑄[𝑛],
described as

𝑦𝑄[𝑛] = 𝑎21𝑦1[𝑛] + 𝑎22𝑦2[𝑛]. (6)

The pair of Eq. (5) and (6) represent Cartesian coordinates,
describing the reconstructed phase space for an arbitrary
longitudinal position. It is a convenient practice to chose
the ADT kicker position as reference for the phase space
reconstruction. By using the same longitudinal reference
this technique is further expandable for using multiple beam
position monitors – four in the case of the LHC ADT – as
shown in Fig. 2.

We therefore obtain an analytic signal 𝑥𝑆[𝑛] = 𝑦𝐼[𝑛] +
𝑗𝑦𝑄[𝑛] as the reconstructed normalized transverse phase
space based on a scalar combination of real-valued position
sequences, 𝑦𝑘[𝑛], using

𝑥𝑆[𝑛] = ℎ0[𝑛] ∗ ∑
𝑘

(𝑎1𝑘 + 𝑗𝑎2𝑘) ⋅ 𝑦𝑘[𝑛]. (7)
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Figure 2: Spatial combination of four beam position streams.

The asterisk operator (∗) represents the discrete-time con-
volution of the weighted BPM signals with an additional fi-
nite impulse response (FIR) filter of impulse response ℎ0[𝑛],
allowing shaping of the input noise. When no filter is used,
this method has zero group delay and therefore it is suitable
for applications requiring low latency.

Temporal Method
Referring to [4], this reconstruction method obtains the

slope signal as the 90𝑜 phase rotated version of the position
data utilizing digital filters.

As outlined in Fig. 3, bunch-by-bunch data 𝑦𝑘[𝑛] provided
from individual Beam Position Monitors passes through a
pair of matched filter kernels, denoted as ℎ𝐼[𝑛] as ℎ𝑄[𝑛]. The
filters’ even and odd symmetric impulse responses generate
in-phase (𝐼) and quadrature output signals (𝑄), which can
be combined afterwards thanks to an identical group delay.
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Figure 3: Temporal phase space reconstruction using
matched digital filters ℎ𝐼[𝑛] and ℎ𝑄[𝑛] on the input data
stream 𝑦𝑘[𝑛] of four Beam Position Monitors.
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It is worth noting that the calculated FIR filter output pairs
readily represent phase space coordinates at the longitudinal
position of the corresponding monitor. Therefore, to ag-
gregate four pick-ups to an arbitrary longitudinal reference
location, the individual output vectors need to be aligned
before summing their contributions. This is done by a vec-
tor rotation, 𝜙𝑘, towards a common longitudinal position
(e.g. to the location of the ADT kicker).

The analytic signal 𝑥𝑇[𝑛] = 𝑦𝐼[𝑛] + 𝑗𝑦𝑄[𝑛] obtained from
the temporal method can therefore be described as,

𝑥𝑇[𝑛] = ∑
𝑘

(𝑦𝑘[𝑛] ∗ (ℎ𝐼[𝑛] + 𝑗ℎ𝑄[𝑛]) 𝑒𝑗𝜙𝑘) . (8)

With a short 5 taps kernel length, these filters are tuned
to exhibit nominal transmission at the fractional tune for the
corresponding plane, rendering them applicable for a tune
range exceeding ±0.02 around the target tune [4].

RESULTS
To evaluate the expected performance we model the inher-

ent noise from each Beam Position Monitor as an indepen-
dent additive white Gaussian noise process, 𝑒[𝑛] (𝑒[𝑛] = 0,
noise power 𝑒2[𝑛] = 𝜎2

𝑒), which is added to the desired
noise-free position signal, 𝑦𝑝[𝑛],

𝑦[𝑛] = 𝑦𝑝[𝑛] + 𝑒[𝑛]. (9)

The convolution in Eq. (7) and Eq. (8) with selective FIR
filters lets signals close to the target tune pass unaltered
in amplitude, but shapes the noise power for out-of-band
signals. For the example of the in-phase filter (equivalent for
the quadrature component), the noise power follows from,

𝜎2
𝐼 = 𝜎2

𝑒 ∑
𝑚

∣ℎ𝐼[𝑚]∣2 . (10)

The overall noise contribution is further reduced by the
superposition of 𝑁 = 4 Beam Position Monitors, leading to
a final RMS noise amplitude,

𝜎𝐴 = 𝜎𝑒√𝜎𝐼𝜎𝑄
𝑁 . (11)

It can be shown that the activity defined in Eq. (2) with
noise present according to Eq. (9) follows the well known
Rice probability distribution. The expected RMS amplitude
noise follows the RMS input noise, reduced by filtering and
by the combination of 4 BPMs. For example, in the case the
filter kernels listed in [4] are used for the temporal method,
then the expected total process gain is 9.2 dB.

The measurement noise also affects the observable frac-
tional tune (Eq. (3)) from the reconstructed phase space data
𝑥𝑇[𝑛], with the RMS phase noise given as,

𝜑rms = atan𝜎𝐴
𝐴0

(12)

At this point it is worth noting that, for large amplitudes
𝐴[𝑛] >> 10𝜎𝐴, the reconstructed values for amplitude and

phase exhibit measurement noise following the assumed
normal distribution (standard deviations 𝜎𝐴 respectively
𝜑rms), however, due to the filtering their spectral density is
no longer white.

Furthermore, for 𝐴[𝑛] << 10𝜎𝐴 the observed phase vec-
tor resembles a uniform distribution, with an arbitrary phase
value between [−𝜋, 𝜋], providing no useful information on
the fractional tune. Numerical simulations using Eq. (4)
and a BPM noise floor of 𝜎𝑒 = 0.219 m (taken from [2])
indicate that a minimum signal to noise ratio (SNR) of
20 log10(𝐴[𝑛]/𝜎𝑒) ≥ 30 dB is required to obtain an RMS
tune variation of 𝜎𝑄 better than 10−3.

This value is confirmed by measurements of LHC injec-
tion transients, shown in Fig. 4 as an example, where the
turn-by-turn fractional tune of one individual bunch is re-
constructed from 4 LHC BPMs using the method described
by Eq. (8). The red trace indicates the 16-turns moving av-
erage of the instantaneous fractional tune 𝑄𝑇[𝑛] (in gray),
and with the RMS tune error depicted in black. Between
2000 and 2500 turns after injection the oscillation amplitude
has decayed to an SNR of approx. 30 dB, and the measured
RMS tune variation 𝜎𝑄 = 1.1 ⋅ 10−3, which is in excellent
agreement with the numerical prediction.
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Figure 4: Fractional tune from reconstructed transverse
phase space using 4 LHC BPMs using the temporal method.

CONCLUSION

The suggested methods are both valid candidates for re-
constructing the transverse phase space in real-time. With
the spatial method being attractive for the analysis of fast
beam transients, for example during injection transients and
with 5 turns damping time, both methods profit from the
suppression of out-of-band noise using filter kernels which
improves the SNR.

Potentially, more elaborate filter response functions can
be designed to lower the SNR even further, for instance by
processing the beam position data of 100 to 1000 turns.
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