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Abstract
The European XFEL is currently operating with hundreds

of superconducting radio frequency cavities. To be able to
minimize the downtimes, prevention of failures on the SRF
cavities is crucial. In this paper, we propose an anomaly
detection approach based on a neural network model to pre-
dict occurrences of breakdowns on the SRF cavities based
on a model trained on historical data. We used our exist-
ing anomaly detection infrastructure to get a subset of the
stored data labeled as faulty. We experimented with different
training losses to maximally profit from the available data
and trained a recurrent neural network that can predict a
failure from a series of pulses. The proposed model is using
a tailored architecture with recurrent neural units and takes
into account the sequential nature of the problem which can
generalize and predict a variety of failures that we have been
experiencing in operation.

INTRODUCTION
The superconducting radio-frequency (SRF) cavities are

responsible for accelerating beams which are used in the
European X-ray Free Electron Laser (EuXFEL) to obtain
extremely brilliant X-ray photon light.

Particle accelerators use the cavity resonators operating
in radio-frequency spectra to accelerate particles by synchro-
nization with their frequency. The cavities accelerate and
energize particles by the induced alternating electric field.

For superconductivity, it is necessary to maintain the cav-
ities cooled to very low temperatures, usually near absolute
zero, with a cryogenic system. The cryogenic system main-
tains the temperature to preserve the superconductivity. The
superconductivity minimizes the losses through the wall to
a minimum and thus almost all RF power can be transmitted
to the passing beam.

EuXFEL is currently operating 784 SRF cavities and it
is necessary to use automated algorithms to prevent fail-
ures. One kind of failure we are particularly interested in
are quenches. A quench is when cavity walls lose their su-
perconductivity due to temperature breakdown. It leads to a
loss of superconductivity and energy is dissipated through
the cavity walls (the surrounding helium bath is heated up)
thus the quality factor decreases, i.e. efficiency decreases.
Although the quench limits are experimentally tested and set
in the firmware to hard limits, there are numerous situations
where the cavity can quench due to e.g. degradation which
lowers quench limits.

EuXFEL SRF cavities are operating in pulsed mode, there-
fore we have available a sequence of waveforms with a fixed
length. The current quench detection system at EuXFEL
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Figure 1: Two examples of amplitudes of healthly (top) and
quenching amplitudes (bottom). Probe p, forward f and r
signals are depicted red, green, and blue respectively.

is observing the quality factor [1]. It is one of the classic
methods for the detection and prevention of such quenches.
In [2] an online approach for quench detection based on the
calculation of detuning and bandwidth on superconducting
cavities is presented which is specially tailored to continu-
ous wave operation. A model-based approach for anomaly
detection on cavities is shown in [3]. In [4, 5] the parity
space method is used to detect anomalies on SRF cavities.
Recently data-driven machine learning approaches [6,7] are
used for cavity breakdown prediction on cavities.

Our currently deployed quench detection server [1] pro-
vides a daily overview of probable quenches. Recently, Eu-
XFEL created a dataset of events that are probable faults.
The availability of such a labeled dataset allowed us to ex-
periment with data-driven machine learning models. This
paper presents a study of data-driven anomaly detection to
detect faults on RF cavities tailored to the case of EuXFEL.
We demonstrate that vanilla data-driven machine learning
methods can be trained to predict potential failures with very
limited access to training data labeled as faulty.

The structure of this paper is the following: First, we de-
scribe the procedure of preprocessing data. Then, we present
details of the proposed architecture used for the prediction
of faults. Lastly, we show the results of our approach on a
test set using different data-driven approaches.

METHOD
Notation

At a time moment 𝑡 we observe a pulse which consists of
three types of complex-valued waveforms: probe p, forward
f, reflected r, see Fig. 1. Each event consists of a series of
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h2=LSTM(h1)
input=256, output=256

ϕ=Linear(h2)
input=256, output=64

s = ∥ϕ (h2)− c∥2
input=64, output=1

h1=LSTM(x)
input=1092, output=256

h3=Linear(h2)
input=256, output=1

l = Sigmoid(h3)
input=1, output=1

x SAL

BCE

fϕ(x)

Figure 2: The architecture consists of two LSTM layers. The final linear (green) layer has either 64-dimensional output for
a model trained with SAL or 1-dimensional for a model trained with BCE loss. As an input, the network receives a series of
signals where a pulse is a 1092 dimensional vector x. For the SAL, the anomaly score 𝑠 is obtained by calculation of the 𝐿2
distance of the output of the feature layer 𝑓𝜃 (x) from c. For the model trained with BCE, the likelihood 𝑙 of a healthy signal
is obtained after the application of the Softmax function.

pulses, where all waveforms are 1.82 ms long and sampled
at 1 MHz. This yields 1820 values per waveform.

Preprocessing
Processing the entire 1820 values of each waveform

is unnecessarily redundant and computationally and data-
intensive, therefore we further subsampled each waveform
to 182 values. Furthermore, for ease of data handling, we
further transformed each type of waveform from amplitude
and phase to the IQ coordinates. In summary, we stack a
series of transformed IQ waveforms, i.e. 1092 values per
pulse x. We further perform normalization of each waveform
independently to the (0, 1) range.

The Model
We experiment with two models. One is based on semi-

supervised anomaly loss (SAL) the other with binary cross-
entropy loss (BCE). For both models, we use identical archi-
tecture with recurrent units, but the final layers are slightly
different. The proposed model consists of stacked Long
Short-Term Memory (LSTM) units with a linear unit, see
Fig. 2. The first LSTM layer encodes the input x into
256-dimensional vector h1, which is further passed another
LSTM layer h2 with identical dimensionality as h1. The
choice of architecture is not arbitrary. Most of the available
training data is recorded with less than 250 pulses. There-
fore to cover the entire time range of the labeled faults, we
designed a two-layer network where input and hidden recur-
rent neural units have 256 hidden units. This should provide
sufficient freedom to train the temporal relations that are
contained in individual training events.

Semi-supervised Anomaly Detection Values from h2
are presented into the final linear layer that produces a
64-dimensional vector 𝜙. We refer to transformed inputs
into the final linear layer as features 𝑓𝜃 (x). Calculation of
anomaly score 𝑠 is performed by measuring the 𝐿2 distance
of the input’s features 𝑓𝜃 (x) from a common centre c.

Classifier Unlike the model trained with SAL, the classi-
fier trained with BCE has a single binary value that signifies
if the output is faulty or not, therefore the last vector h2 is
fed into a linear unit with just one output ℎ3. A sigmoid unit
can be used to obtain a likelihood of a healthy signal 𝑙.

Optimization
The critical component of our model is a proper loss

function. Since we have only a few labeled training data
as a fault, the BCE may suffer from biases toward healthy
data. For this purpose, we adopted SAL [8] defined over 𝑁
training samples as

𝐿(𝜃) = 1
𝑁

𝑁
∑

𝑖
‖𝑓𝜃 (x𝑖) − c‖2 + 𝜂‖𝑓𝜃 (x𝑖) − c‖𝑦𝑖

2 . (1)

The first term is a one-class loss [9] that fits the input
data regardless of label. The second term is the SAL [8]
which takes into account the category of the input data x by
exponentiating by 𝑦. Variable 𝑦 signifies if x is an anomaly
or not. Intuitively, if 𝑦 is not an anomaly, then the value is set
to 1 and the optimization trains the network and c to move as
close as possible. Contrarily, if 𝑦 is a (known) anomaly, the
value is set to −1 and it intuitively moves the network 𝑓𝜃 (x)
and c away from each other thus increases the anomaly score
for such samples. Since we have a small set of partially
labeled data that contains various types of faults, the trained
model mostly adapts to standard operations in healthy data
with a noticeable emphasis on unhealthy data which are
moved away from each other. The benefit of SAL is that
features 𝑓𝜃 (x) reveal information about various faults in the
feature space since it optimizes distances in it. It potentially
allows further analysis with very little supervision because
the network itself plays a role of a bottleneck. It is important
to note that unlike [8], we update c during optimization.

We also evaluated the LSTM model with BCE loss. It
requires minor changes in architecture and the output of h2
is replaced with a single-valued binary output ℎ3. After
applying sigmoid, we have a likelihood 𝑙 of a healthy pulse.
This architecture has an important merit because evaluation
provides a likelihood of whether the input is an anomaly or
not and avoids the need to specify a threshold.

Each event consists of a sequence 𝐾 of pulses (x1, … x𝐾).
For healthy events, the loss is calculated for all pulses in the
event, in case of faulty events only the last event is trained.

EXPERIMENTS
Faulty data was detected by an available quench detection

server [10]. Faulty events consist of 250 pulses or less with
usually 200 pulses before the event and 50 afterward.
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Figure 3: Histograms of anomaly scores 𝑠 trained with SAL (Top) and likelihoods 𝑙 trained with BCE (Bottom) for different
datasets. (Top) The events sampled from trained months (Jan, Feb) have very low anomaly score 𝑠 and the highest scores
are always below 0.35. Events sampled in March have an increase in anomaly scores since there are seasonality effects that
might be labeled as an anomaly. (Bottom) Likelihood of a healthy last pulse 𝑙 of a model trained with BCE loss.

Table 1: Evaluation of model trained models on two test
sets. The test set consists of samples randomly sampled
from available data. March 2022 is sampled over the entire
month to test how the model responds to long-term untrained
events.

Test set March 2022
Method TP TN FP FN TN FP

SAL 103 7691 0 9 35034 952
BCE 96 7685 6 16 34869 1117

Jan, Feb, Anomaly Jan, Feb, March

Figure 4: T-SNE Embedding [11] of feature outputs 𝑓𝜃 (x)
of SAL on the last pulse in the event. (Left) Training and
testing events from Jan 2022 (green), Feb 2022 (blue) and
anomaly (red). (Right) Training and testing events from Jan.
2022 (green), Feb 2022 (blue) and March 2022 (red).

The healthy data were equally sampled and downloaded
from our DAQ system [12]. Healthy events usually have 250
or 500 pulses. The training data are sparsely sampled from
all available stations over a period of five months.

We have 81922 healthy events and 1331 labeled faulty
events available. The test set is randomly sampled with 7803
healthy and 102 faulty events. Additionally, we created one
test set with only healthy events over a period of March 2022
to test how models react to novelty.

Evaluation
We evaluated both approaches after 50 epochs trained

with ADAM. Table 1 and Fig. 3 show their comparisons.
The model trained with SAL performs better on the test

set, where none of the healthy events was wrongly identified
(FP) and only 9 faulty events were not identified (FN), see

Table 1. The threshold for labeling an event as an anomaly
was all scores exceeding one times the standard deviation of
all scores in the test set. Slightly better performance than
BCE is noticeable on the healthy test set sampled in March
2022, where 952 events were identified as a fault. This can
further be identified in the right image in Fig. 4, where a
part of the healthy events of March 2022 noticeably deviates
from the trained datasets for January and February 2022.

The model trained with BCE wrongly identified 6 healthy
events (FP) as faulty and 16 faulty events were not identified
(FN). The model also performs slightly worse on the March
2022 test set by identifying 1117 healthy events as faulty.

CONCLUSION AND FUTURE WORK
In this paper, a data-driven and model-free approach to

detecting cavity anomalies is shown. We show a training
model which can bypass the disproportionally many healthy
training samples by using a SAL [8] and compare it with
BCE. The SAL allowed us to train the proposed model with
an abundance of healthy data. As a byproduct, the model is
trained to project inputs to a feature space that reveals the
potential for further classification of different types of faults.

Experiments show that our method can identify a large
part of faults in our test set. One of the major limitations is
that waveforms may vary over longer periods. This causes a
noticeable increase in false positives for events from different
time periods.

In the future, since the lower-dimensional features of the
SAL model still carry the information about a fault, we
would like to experiment with different models to achieve
better interpretability of the features and distinguish between
different types of faults. Since the dimensionality of features
is much smaller, this should also require smaller training
datasets. Additional insights can also be revealed by using
generative models for anomaly detection [13] instead of
discriminative ones.
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