
EPICS-BASED TELEGRAM INTEGRATION FOR CONTROL AND ALARM
HANDLING AT TEX FACILITY

D. Moriggi∗, S. Pioli, F. Cardelli, C. Di Giulio, P. Ciuffetti
INFN - Laboratori Nazionali di Frascati, Italy

Abstract
TeXbot is a Telegram bot developed in python language

used to notify in asynchronous way event in TEX (TEst stand
for X-band) facility at Frascati National Laboratories. The
application has been realized making use of framework such
as telepot and pysmlib, to interface with Telegram and with
EPICS environment respectively.

The bot make able the user to subscribe to multiple topic
in order to be automatically notified in case of different
set up of the machine or when an interlock occurs on a
single component. Furthermore the user can request accurate
information about subsystem of the accelerator by simply
make use of special commands and token in Telegram app.

INTRODUCTION
In any industrial context it is present the need to have

information delivered in the fastest way as possible.
In this environment the Telegram TeXbot solution can

be deployed, since it can control and handle alarm when a
subsystem goes in an interlock state or certain event occurs
to the system.

The bot is developed at National Laboratory of Frascati
and running at TEX (EuPRAXIA TEst stand for X-band)
facility and is capable of sending automatic live messages
through Telegram app displaying information on particle
accelerator system state.

The final user can start joining private chat and once in-
serted the correct password can initiate conversation with
bot asking for precise information about the TEX facility.
Through text recognition the bot can answer by sending in-
formation directly or can eventually submit different kind of
menu used to let user choose the appropriate content.

Moreover the consumer can handle subscription to spe-
cific categories in order to receive accurate notifications on
certain devices in real-time, or also ask for the chart rep-
resenting the history for a particular component in a given
time span.

FRAMEWORK
This system is realized thanks to the integration of multi-

ple framework each devoted to a different type of function-
alities. The first to be mentioned is Telepot [1], a Python
repository downloadable from pip, the packet manager for
Python, that encapsulate Telegram API (Application Pro-
gram Interface) [2] making able to build up and control the
bot.
∗ daniele.moriggi@lnf.infn.it

The second Python library used to create state machine
capable of handling events during system operations and
making able the bot to communicate with EPICS is pysmlib
[3], which is built on top of PyEpics and therefore guarantees
a perfect integration with EPICS Channel Access.

The last is flask [4] used to realize the back-end component
responsible to make available API to retrieve and manipulate
data coming from the EPIC S Archiver Appliance [5, 6]
used to store data of the TEX facility.

ARCHITECTURE
The main four components that constitute the overall ar-

chitecture are shown in Fig. 1 and it will be described in the
following:

• the EPICS Channel Access
• TeXbot, the Telegram bot
• Flask back-end for retrieval
• EPICS Archiver Appliance

The first fundamental requirement for this kind of setup is the
need of EPICS CA (Channel Access), that once a connection
it’s established with it, make the system able to retrieve live
information on PVs (Process Variables) of the TEX facility.

Then obviously comes the TeXbot that could be thought
and refer to it as a listener in the framework, because it is
distributed in reading-mode respect to data, interrogating
the CA and sending raw information to Telegram user.

Another component is represented by the back-end ser-
vice that behave in its own container and it is responsible
to exposes APIs used to retrieve manipulated information
coming not only from live data, but even from the archived
ones.

The last independent service that runs in its dedicated
container is the EPICS Archiver Appliance, which is devoted
to handle a layered data storage by saving information in
three different area depending on its date of acquisition.

u 
Channel Access 

Back-End 
TeXbot 

API 
oe �ask 

, 

Container Container 

u 

EPICS 

EPICS 
..-iu 

Archiver 

Appliance 
Container 

Figure 1: Architecture.

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-TUPOPT060

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T04: Accelerator/Storage Ring Control Systems

TUPOPT060

1145

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



FUNCTIONALITIES
TeXbot

Once registered to the TeXbot inside Telegram App, it is
possible to start interacting with it. Then the first thing to
do it is to authenticate yourself by submitting a pre-shared
password to the application, in order to be authorized to send
commands and visualize data.

The interaction with bot is performed through the imple-
mentation of token recognition, to perform common opera-
tion of visualizing general information, retrieve data, register
to particular categories or produce plot for certain variables.

Moreover multiple menu are implemented to make a col-
lection of different portion of the data, helping the end user
to visualize detailed information on the particle accelerator
of TEX facility.

Recognized Tokens In the following it will be described
a list of token words that can be sent to the TeXbot in order
to perform a specific action.

• /password - used as a first command when starting the
TeXbot, authenticate the user to the bot

• /info - shows general information on the system and the
developer

• /help - shows an help to make clear how use the com-
mands (Fig. 2a)

• /tex - it shows a menu, let the user the possibility
to choose among different collection of information
(Fig. 2b):

– Status Tex - shows overall information of the fa-
cility, modulator status, vacuum status on compo-
nents

– Source Status RF - shows precise information
about RF (Radio Frequency) source

– LLRF - shows information about Low Level Ra-
dio Frequency signal

– Vacuum - shows another sub-menu for each sub-
system: klystron, Wave Guide and RF-loads to
monitor the respective vacuum

– Safety - show the operational state and if the patrol
has been performed

• /categories - shows which categories of information
can subscribe to

• /subscribe /unsubscribe - open another sub-menu
used to subscribe/unsubscribe to categories and re-
ceive/cancel live message when certain event occurs
(Fig. 2d)

• /subscription - shows active user’s subscriptions
(Fig. 2d)

• /history <category> last <timeSpan> - it will provide a
downloadable chart representing the history of the PVs
belonging to selected category in a given time span
(hours, days, months) (Fig. 2c)

(a) /help command (b) /tex command

(c) /history command (d) /subscription command

Figure 2: Screenshot.

In Fig. 2 are presented some features of TeXbot.

EPICS State Machine The core functionalities respon-
sible for the interconnection with EPICS Channel Access
are delegated to pysmlib, that is devoted to realize a FSM
(Finite State Machine).

At the start the FSM is in a basic state and with high pri-
ority continuously poll specific PVs belonging to a category
to be supervisioned given that represent an important part
of the system that can raise an alarm.

As long as no alarm occurs it waits for message arriving
from TeXbot and when this occurs, the FSM will compose
the message to be redirected to the user who made the re-
quest.

The logic implemented by the state machine can be seen
on the flowchart in Fig. 3. From the idle state the first check
is about interlock, if one or more occurs the system then

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-TUPOPT060

TUPOPT060C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

1146

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T04: Accelerator/Storage Ring Control Systems



evaluate if anyone is subscribed to that category to which
ilk belong, if so the message is sent else the system return
to idle state.

If no ilk occurs, the state evaluate if any messages arrived
from Telegram, if so then the data are retrieved from backend
or Channel Access and sent to telegram user in form of
message or image.

Figure 3: Logic flowchart.

Back-End
To perform more complex operations on data, a back-end

service has been created making use of Flask, that exposing
APIs to other services can extend in a powerful way the
possibility to aggregate, manipulate information and con-
trol subsystem. This kind of service behaves as a bridge
establishing connection among different component in the
architecture and making this framework fully extendable in
terms of services and capabilities.

The back-end is mainly used, at this stage, for the interac-
tion with the EPICS Archiver Appliance, that is used to store
data and from which can be query the database to retrieve
raw data.

EPICS Archiver Appliance
The EPICS Archiver Appliance by Shankar et al. is the

subsystem that has been deployed in its own container and it

is responsible for archiving pre-defined set of PVs, following
for each of them a precise policy for storaging.

In order to store data, the EPICS Archiver Appliance uses
ProtocolBuffers (PB) serialization mechanism by Google,
moving the information from the closest layer, the Short
Term Store (STS), dedicated to last data in order of arrival,
to the farther layer, the Long Term Store (LTS), dedicated
to the oldest data produced. Moreover it also make you able
to query the database through its APIs.

CONCLUSION

TeXbot can represent a possible solution integrated and
developed upon Telegram and EPICS, respectively one of the
most downloaded application on mobile application market
nowadays and one of most used framework for controlling
system, solving different kind of problem in a given techno-
logical research and industrial environment.

It in fact can handle in real time alerting messages and
can be extremely expandable under a newly presented ar-
chitecture, representing a powerful solution deployable in
a relative low time and guaranteeing high reliability and
stability.

REFERENCES
[1] Telepot, https://telepot.readthedocs.io/en/latest/

[2] Telegram, https://core.telegram.org/

[3] D. Marcato et al., “Pysmlib: A Python Finite State Machine
Library for EPICS”, presented at the ICALEPCS’21, Shanghai,
China, Oct. 2021, paper TUBL05, unpublished.

[4] Flask, https://flask.palletsprojects.com/en/2.1.x/

[5] EPICS Archiver Appliance, https://slacmshankar.
github.io/epicsarchiver_docs/index.html

[6] M. V. Shankar, L. F. Li, M. A. Davidsaver, and M. G. Konrad,
“The EPICS Archiver Appliance”, in Proc. ICALEPCS’15,
Melbourne, Australia, Oct. 2015, pp. 761–764.
doi:10.18429/JACoW-ICALEPCS2015-WEPGF030

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-TUPOPT060

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T04: Accelerator/Storage Ring Control Systems

TUPOPT060

1147

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I


