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Abstract
High intensity hadron accelerator performance is often

dominated by the need to minimise and control beam losses.
Operator efforts to tune the machine during live operation
are often restricted to local parameter space searches, while
existing physics-based simulations are generally too compu-
tationally expensive to aid tuning in real-time. To this end,
Machine Learning-based surrogate models can be trained
on data produced by physics-based simulations, and serve
to produce fast, accurate predictions of key beam proper-
ties, such as beam phase and bunch shape over time. These
models can be used as a virtual diagnostic tool to explore
the parameter space of the accelerator in real-time, without
making changes on the live machine. At the ISIS Neutron
and Muon source, major beam losses in the synchrotron are
caused by injection and longitudinal trapping processes, as
well as high intensity effects. This paper describes the train-
ing and inference performance of a neural network surrogate
model of the longitudinal beam dynamics in the ISIS syn-
chrotron, from injection at 70 MeV to 800 MeV extraction,
and evaluates the model’s ability to assist accelerator tuning.

INTRODUCTION
Machine learning (ML) has emerged as a valuable tool

across many sub-disciplines within accelerator physics. Re-
cent work has demonstrated its potential in control [1–3],
tuning and optimisation [4–7], and virtual diagnostics [8–10].
Several of these recent advances rely on ML-based surro-
gate models [11, 12], which can offer an accurate substitute
for traditional physics-based simulations with several orders
of magnitude reduction in computation time. This paper
will focus on training a parameter-to-image convolutional
neural network (CNN) that takes the initial beam parame-
ters and machine settings as input to reconstruct simulation-
generated images representing key beam properties in the
ISIS synchrotron.

At the ISIS Neutron and Muon source up to 3 × 1013

protons per pulse are accelerated from 70 MeV to 800 MeV
by a 50 Hz rapid cycling synchrotron [13]. The majority
of beam losses at the facility occur in the synchrotron, due
to injection and longitudinal trapping processes as well as
high intensity effects. Since operators must rely on feedback
from the live machine during tuning, they are restricted
to making small, incremental changes to ensure important
operational constraints such as low loss are always satisfied.
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This approach can be time-consuming for operators, and
such a restricted parameter space search is likely to yield
sub-optimal local minima for a given optimisation problem.

A method for searching the parameter space without such
constraints is clearly desirable, and physics-based simula-
tions can be leveraged to address this. However, since these
simulations are generally too computationally expensive to
aid tuning in real-time, fast-executing surrogate models may
offer an alternative that allows for real-time use in the control
room to aid machine tuning.

Modelling the ISIS Synchrotron
The accelerator physics group at ISIS has developed a C++

turn-by-turn physics-based simulation of the longitudinal
dynamics of the ISIS synchrotron [14]. The simulation takes
in a wide range of inputs that define properties of the injected
beam as well as how the RF settings vary over the 10 ms
injection cycle, and outputs several bunch properties at each
turn, including longitudinal bunch charge distribution and
emittances.

One key measurement that is frequently used as a diagnos-
tic during tuning is an image representing the evolution of
the longitudinal charge density of a bunch in the synchrotron
over time, see Fig. 1. Each row represents the longitudinal
charge distribution of the bunch at a particular turn. This is
referred to as a “waterfall plot” by ISIS operators, and can be
used to quickly diagnose the state of the synchrotron by iden-
tifying common unstable modes such as oscillations in the
mean phase and root mean square bunch length. The CNN
models explored in this paper were trained to reconstruct
these waterfall plots from simulation data.

Figure 1: Left: Waterfall plot acquisition from a single beam
position monitor in the ISIS synchrotron. Right: Simulation-
generated waterfall plot. The bunch charge distribution
evolves from injection at the bottom of the plot to extraction
at the top over the 10 ms acceleration cycle.
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DATASET GENERATION
The physics-based simulation takes in a set of 5 scalar

parameters, representing important beam properties includ-
ing injection energy mismatch, intensity, and space-charge
effects, as well as three time series as input. The time se-
ries define how the 1RF gap volts, the 2RF gap volts, and
the 2RF phase difference vary over the 10 ms acceleration
cycle. Each time series was interpolated at a fixed set of
17 points across the 10 ms cycle, leading to 3 × 17 time
series inputs. This gave a total of 56 inputs to be fed into
the surrogate model. The scalar parameters were randomly
sampled within reasonable ranges defined by the accelerator
physics experts. Sampling of the time series inputs required
more care, and proved to be of key importance in producing
a useful surrogate model.

The last three years of historical machine settings were
analysed, over which the machine settings were generally
stable. The mean and ranges of the machine settings were
calculated, and the sampling strategy was adapted to ensure
that the entire range was covered over many samples.

A scheme of adding the mean historical settings to a com-
bination of element-wise Gaussian noise and continuous
random variations was adopted, see Fig. 2. The continu-
ous random variations introduced local correlations in the
time series, preventing the large losses and instabilities that
come with mismatched RF buckets in the synchrotron, while
avoiding global correlations that would distort the model’s
learning process. The random noise helped to mitigate the
problem of the surrogate model over-relying on local corre-
lations in its inputs to make predictions.

Figure 2: Three example synthetic time series inputs (solid
orange, blue, and green lines), overlaid onto the historical
machine settings statistics.

This final sampling strategy was used to generate 15000
input-image pairs, generated by running the physics sim-
ulations in an embarrassingly parallel fashion across 100
CPUs. The turn-by-turn longitudinal charge density was

downsampled and interpolated to generate a 200 × 100 pixel
image representing the waterfall plot output of each simu-
lation. 11000 points were used for training the model, and
the remaining 4000 points were split equally into validation
and test sets, used for hyperparameter tuning and model
evaluation respectively.

MODEL TRAINING
Initially, a simple parameter-to-image CNN architecture

was experimented with and underwent hyperparameter tun-
ing. The model was trained to minimise the 𝐿2 pixel-wise
error between the ”ground truth” simulation-generated wa-
terfall plot and the surrogate model generated reconstruction.
All model training and evaluation was done using Tensor-
Flow [15] and Keras [16], using the default Adam optimiser.
The final architecture employed, given in Fig. 3, achieved
low reconstruction loss and successfully reproduced most
key features in the waterfall plots.

Figure 3: The base model consisted of 5 fully-connected
layers with 256 nodes each, followed by 4 blocks of upsam-
pling, batch normalisation, and transposed convolutional
layers. ReLU activations used everywhere.

One issue that became apparent, however, was the model’s
inability to reproduce high frequency oscillations in the
mean position of the bunch over time. These oscillations can
be caused by a mismatch between the incoming beam and
the RF bucket, and may be indicative of growing instabilities
in the bunch. Accurately reproducing these oscillations in
the surrogate model was therefore important from an opera-
tional point of view. Many different standard loss functions
and architectures were explored to achieve this.

Some success was found using a GAN architecture (by
appending a discriminator to the base model) that adversar-
ially learnt features in the waterfall plots [20]. Finally, a
custom loss term that explicitly compared the amplitude of
oscillation over time between the ground truth waterfall plot
and the reconstruction was added to the loss function. This
greatly improved reproduction of these oscillations in the
ML-generated images. Results are shown in Table 1, with
some example reconstructions given in Fig. 4.
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Table 1: Performance metrics of the investigated architectures and loss functions on the hold-out test set. None of the
modifications significantly improved 𝐿2 pixel loss. Only the custom loss model and the GAN architecture, which was
trained adversarially to learn features beyond pixels, significantly improved reproduction of mean phase oscillations.

Performance
Metric

Base Model 𝐿1 Pixel Loss
[17]

ResBlock
Decoder [18]

cVAE [19] GAN [20] Custom Loss

𝐿2 Pixel Loss (×10−5 ) 6.36 5.91 6.07 6.03 8.67 6.25
Oscillation Loss 0.128 0.110 0.107 0.132 0.075 0.063

Figure 4: Two example simulation-generated waterfall plots alongside the reconstructions of the different models. Mean
phase oscillations are identified by the high frequency horizontal spikes along the plots, which many models fail to reproduce.

All models that were only trained on a pixel-wise loss
function failed to reproduce the oscillations consistently, ir-
respective of the complexity of the architecture employed.
Predicting the exact turn numbers (i.e. the exact row on the
waterfall plot) of the peaks and troughs of the oscillations
is an extremely difficult problem without relying on the nu-
merical integration of a physics-based model; the surrogate
model likely learned to smooth over the oscillations since it
could not predict the exact pixels. An oscillation-dependent
loss term provided a training signal that taught the surrogate
model to mimic the amplitude of the mean phase oscillations,
rather than reproduce them pixel-wise. This behaviour was
sufficient as operators are primarily interested in qualitative
features of the oscillations, such as amplitude and rough
position. This approach could be extended to other features
that a simple pixel-wise loss function fails to fully capture.

EXPERIMENTAL DEPLOYMENT
An attempt to evaluate the performance of a zero-shot

transfer from simulation to live operation was made in the
last ISIS operating cycle. A GUI was developed to allow for
simple interfacing between the control system and the model.
Unfortunately, due to operational issues at ISIS stemming
from several recent upgrades, the synchrotron RF settings
were undergoing large, frequent changes in the run-up to
deployment. It was therefore not possible to train a model
over the live RF settings in time for deployment. Once
machine settings at ISIS stabilise, it is hoped that a proper
evaluation of the surrogate model can be undertaken.

CONCLUSION
Once an efficient strategy for sampling the large input

space of this problem was developed, it was straightforward
to develop an ML-based surrogate with a simple architecture
that could accurately reconstruct most important features in
the target waterfall plots. In addition, hand-crafted loss terms
provide an avenue to reconstructing qualitative features that
are important to operators where pixel-wise loss does not
suffice. The rapid-executing surrogate shows potential to
aid machine tuning by providing operators with real-time
feedback during parameter space searches.

The difficulties encountered in evaluating the model on the
live machine highlight a serious shortcoming of ML-based
surrogate models: such surrogate models are only useful
insofar as stable operating conditions can be guaranteed.
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