
RCDS-S: AN OPTIMIZATION METHOD TO COMPENSATE
ACCELERATOR PERFORMANCE DRIFTS∗

Z. Zhang, M. Song1, X. Huang† , SLAC National Accelerator Laboratory, Menlo Park, CA, USA
1also at Department of Physics, Illinois Institute of Technology, Chicago, IL, USA

Abstract
We propose an optimization algorithm, Safe Robust Con-

jugate Direction Search (RCDS-S), which can perform ac-
celerator tuning while keeping the machine performance
within a designated safe envelope. The algorithm builds
probability models of the objective function using Lipschitz
continuity of the function as well as characteristics of the
drifts and applies to the selection of trial solutions to ensure
the machine operates safely during tuning. The algorithm
can run during normal user operation constantly, or periodi-
cally, to compensate the performance drifts. Simulation and
online tests have been done to validate the performance of
the algorithm.

INTRODUCTION
Online optimization is an effective approach to find ac-

celerator settings with high performance. Efficient opti-
mization algorithms are key to online optimization. Popular
optimization algorithms for online accelerator applications
include Nelder-Mead simplex [1], robust conjugate direction
search (RCDS) [2], particle swarm [3], and Bayesian opti-
mization [4]. During an optimization run, as the algorithm
gradually discovers machine settings with high performance,
it can also produce solutions with poor performance, which
cannot be tolerated for normal user operation. Therefore,
online optimization is usually performed during dedicated
machine development or study shifts. However, in many
cases, an ideal machine setting will not maintain the high
performance during the long period of user operation. Small
variations in the accelerator components, caused by or cou-
pled with variations of the surrounding environment, can
cause the machine performance to drift with time.

In this study, we propose a safe tuning method that can
be used during user operation. The new algorithm is called
safe robust conjugate direction search (RCDS-S). It employs
iterative one-dimensional (1-D) optimization over a conju-
gate direction set in a similar manner as the RCDS method.
However, its 1-D optimization is done by a more prudent
and informed fashion, which employs a probability model
of the objective function to assess the risk of exceeding a
safety threshold by the trial solution.

THE RCDS-S METHOD
Our goal of the study is to develop an optimization method

that can be used to optimize accelerator performance during
user operation by keeping the performance above a certain
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threshold. Such a method could be termed “safe” optimiza-
tion algorithm. A safe optimization algorithm could be used
to compensate the performance drift with time, as it can run
in the background continuously, periodically, or as needed.

In the following, we first discuss the uncertainty of the ob-
jective function as it is probed. By constructing a probability
model of the uncertainty and using it to guide the selection
of new trial solutions, we devised a safe 1-D optimization
method. Combining this safe 1-D optimization method and
the conjugate direction search method, we arrived at the new
algorithm, RCDS-S.

Modeling Uncertainty of Objective Function
In this study, we assume the optimization problem to be a

minimization problem, with measurement error (noise) and
time-dependent error (systematic drift). Firstly the gradient
of the objective function has to be limited for a safety set-
ting. We assume the objective function to be L-Lipschitz
continuous, which means for any x, x0 ∈ D, where D is the
domain of the function, we have,

∥𝑓 (x) − 𝑓 (x0)∥ ≤ 𝐿 ⋅ ∥x − x0∥ .

On the other hand, without further information about the
specific optimization problem, the drift can be modeled as
a random walk process. Under this assumption, the uncer-
tainty of the measurement becomes a time varying random
variable,

𝑦 = 𝑓 (x) + 𝜖(𝑡),

where 𝜖(𝑡) ∼ 𝑁(0, 𝜎2
𝑛 + 𝑡𝜎2

𝑑). Here 𝜎𝑛 is the noise level,
𝜎2

𝑑 represents the increase of the variance within a unit time
interval, and 𝑡 the time elapsed from a reference point.

Given the safety threshold ℎ, to guarantee 𝑦 ≤ ℎ we have:

̂𝜖 ≤ ℎ − 𝐸max

√2𝜎2
𝑛 + 𝑡 ⋅ 𝜎2

𝑑

, (1)

here 𝐸max is the maximum expected value of objective 𝑦
at point x which satisfies 𝐸max(x) = 𝑦0 + 𝐿 ⋅ ∥x − x0∥, and

̂𝜖 ∼ 𝑁(0, 1).

1D Safety Exploration
For a 1D problem, given a few observations, the safety

probability of each candidate can be computed with Eq. (1).
The idea is that each observation would provide safety infor-
mation for all the other candidates along the direction, based
on the relative measurement time and position with regard
to the candidate of interest, and the final safety probability
of one candidate can be determined by combining the safety
information from all the observations. One example safety

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-TUPOMS037

TUPOMS037C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

1506

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33: Online Modeling and Software Tools



probability distribution along a normalized 1D domain is
shown in Fig. 1.

Figure 1: Snapshot of the safety probability along the viable
range at the end of 1-D safety exploration. Safety probability
curve is calculated with the 8 given observations. The order
of sampling is indicated by the number on top of each obser-
vation. Orange triangles denote the observations, blue curve
shows the calculated safety probability, the safety region
with safety probability threshold 𝑝𝑠 = 0.9 is highlighted in
green.

Once the safety probability is available for each candidate,
the exploration algorithm would pick one that is safe enough
(i.e. the safety probability exceeds a specific threshold, such
as 𝑝𝑠 = 0.9) and could extend the explored region the most,
as the next solution to sample.

Figure 2: Parabola fitting at the end of each acquisition.
The purple dashed vertical line indicates the peak position
found by the fitting, the purple region around the peak line
shows the uncertainty of the peak position, calculated by the
covariance matrix of the parabola fitting.

After evaluating the new sampled solution, a parabola
fitting would be performed with the current observations
to locate the optimal solution, as demonstrated in Fig. 2.
If the fitting could bracket the optimal position with rela-
tively small uncertainty, the safety exploration is terminated
and the optimal solution would be reported, otherwise the
procedure above is repeated until: 1) the parabola fitting
succeeds, or 2) no more safety candidates are available, or
3) maximum attempts exhausted. The process of a complete
safety exploration is visualized in Fig. 3.

The RCDS-S Algorithm
Combining the scheme of iterative 1-D optimization over

conjugate directions [5], the safety 1-D exploration discussed

Figure 3: Evolution of the safety probability during a safety
exploration on the drifting 1-D test problem. Red dot de-
notes the time and position of the corresponding sampled
point. The safety probability is calculated with the Gaussian
random walk drift model.

in previous sections and the use of parabolic fitting to deter-
mine the minimum [2], we arrive at the RCDS-S algorithm.
In the algorithm implemenation, we choose to normalize all
parameters to within the range of [0, 1]. Two most critical
hyper-parameters in the modeling of the safety probability
are the Lipschitz constant 𝐿𝑣 in normalized decision space
and the drift rate 𝜎𝑑 in time. Choosing good values for these
two parameters is crucial to the safety performance of the
proposed algorithm.

Figure 4: Determination of the hyper-parameters for the
kicker bump matching test problem. Left: variation of ob-
jective function over time; right: objective function vs. pa-
rameter scan in two directions.

The hyper-parameters can be obtained before applying the
algorithm to a specific problem by analyzing historic data
or performing additional measurements. Examples of the
parameter-determination scans are shown in Fig. 4.

TEST RESULTS
Simulation and experimental studies were conducted to

test the performance of the RCDS-S algorithm in online
optimizations for drifting problems. The test problem is

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-TUPOMS037

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33: Online Modeling and Software Tools

TUPOMS037

1507

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



kicker-bump matching for a storage ring, with a 2-D decision
space. In the test, the strength of one kicker, K1, is modulated
in a sinusoidal form to simulate the systematic drift, as shown
in

𝑣(𝑡) = 𝑣0 + 𝜎𝑑 [sin (2𝜋
𝑝 (𝑡 + 𝑡0)) − sin (2𝜋

𝑝 𝑡0)] , (2)

where 𝑝 is the drifting period, 𝜎𝑑 the drifting amplitude, 𝑡0
the time origin, 𝑣0 the initial value of the modulated variable.

The strengths of the other two kickers, K2 and K3, are
used as tuning knobs of the optimization problem. The
rms turn-by-turn horizontal orbit from 256 turns of residual
oscillations is used as the objective function.

Simulation Test
For the simulation tests, we set 𝑝 = 800, 𝜎𝑛 = 3 µm,

𝜎𝑑 = 0.1 µm per evaluation period. Based on the two pre-
scans discussed in the last section, the Lipschitz constant 𝐿
and strength of Gaussian random walk 𝜎𝑔 are chosen to be
2000 and 0.2, respectively. The safety threshold ℎ can be
varied to change the safety search difficulty. In the tests, the
safety threshold is set to 40 µm, which is only slightly higher
than most of the observed values of the noisy objective at
the initial solution.

Figure 5: RCDS-S for kicker-bump matching in simulation.
Orange dots in the top plot show the objective drift caused
by the modulated kicker strength at the initial solution. The
modulation on K1 along with the evolution history of K2
and K3 are shown in the bottom plot.

The tests have been run multiple times, and the perfor-
mance is stable. A typical test is shown in Fig. 5. The top
plot compares the objective function over one modulation
period for three cases: no optimization, tuning with RCDS,
and tuning with RCDS-S. The test result shows that RCDS-S
is able to follow the drift and seek the optimum while keep-
ing the objectives of the trial solutions well below the safety

threshold. RCDS is also very efficient for the test problem.
However, since it is not aware of the safety threshold, the
proposed solutions are not guaranteed to be safe.

Experimental Test
For the experimental tests, the voltage amplitude of one

kicker (K1) is modulated with a period of 800 data points,
with an interval of 2 seconds between data points. The noise
level was measured right before the algorithm test and was
found to be 5 µm. The initial solution is the same as the
operation setting which would give the best objective if the
system is not drifting.

Two rounds of tests were performed with the experimental
setup. For the first round, the safety threshold is set to 60 µm.
As it succeeded, we set the safety threshold to 50 µm for the
second round. The results for the second round are shown
in Fig. 6, where the objective function for RCDS-S for one
modulation period is compared to the results of RCDS and
the case without tuning.

Figure 6: RCDS-S on the kicker-bump matching experiment
on the SPEAR3 storage ring, with safety threshold 50 µm.

The experimental performance is similar to the simulation
cases for both RCDS-S and RCDS. The objective function
has a larger variance for the evaluated trail solutions in ex-
periments. This could be due to the higher measurement
noise level.

CONCLUSION
In this study, we propose an optimization algorithm

(RCDS-S) that combines robust conjugate direction search
and a new 1-D safety exploration algorithm to optimize
noisy, drifting machine performances online, while keeping
the machine performance within a designated safe envelope.
The proposed algorithm has been successfully tested on sim-
ulated and experimental accelerator tuning problems.
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